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EXECUTIVE SUMMARY 

 

Ongoing anthropogenic emissions of carbon dioxide (CO2) into the 

atmosphere are driving a net flux of CO2 into the ocean globally, resulting in 

a decline in pH called ‘ocean acidification’. Here, we discuss the 

consequences of this for the seas surrounding the UK from a chemical 

perspective, focussing on studies published since the previous MCCIP review 

of ocean acidification research (Williamson et al., 2017). In this reporting 

cycle, the biological, ecological, and socio-economic impacts of ocean 

acidification are considered in more detail in separate accompanying MCCIP 

reviews. 

 

The atmospheric CO2 concentration continues to increase due to human 

activities (Le Quéré et al., 2018), increasing the net flux of CO2 into the global 

ocean, including the North Atlantic and UK continental shelf seas. Such CO2 

uptake has the desirable effect of reducing the rate of climate change, but the 

undesirable result of ocean acidification. Our understanding of the factors that 

drive high spatial and temporal variability in air-sea CO2 fluxes and seawater 

pH in UK waters has continued to improve, thanks to observational 

campaigns both across the entire North-West European continental shelf sea 

and at specific time–series sites. Key challenges for the future include 

sustaining time–series observations of near-surface marine carbonate system 

variables, and of the auxiliary parameters required for their interpretation 

(e.g. temperature, salinity, and nutrients); developing and deploying new 

sensor technology for full water-column profiles and pore waters in seafloor 
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sediments; and increasing the spatial and temporal resolution of models 

sufficiently to capture the complex processes that dominate the marine 

carbonate system in coastal and shelf sea environments, along with improving 

how those processes are themselves simulated. 

 

1. WHAT IS ALREADY HAPPENING 

 
Processes and drivers 

 

CO2 uptake and acidification  

The average atmospheric carbon dioxide (CO2) concentration now exceeds 

400 parts per million (ppm), with an increase of about 2.3 ppm each year over 

the past decade (Blunden and Arndt, 2017; WMO, 2018). This ongoing 

growth is primarily due to CO2 release by fossil fuel combustion, land-use 

change and industrial activities (IPCC, 2013). About a quarter of this annual 

anthropogenic CO2 emission dissolves into the Earth’s  oceans each year (Le 

Quéré et al., 2018). Once dissolved, the CO2 no longer influences the Earth’s 

heat budget, so this oceanic uptake mitigates human-driven climate change. 

However, dissolved (or aqueous) CO2 undergoes a chemical reaction that 

releases hydrogen ions (H+), thereby decreasing the seawater’s pH 

(decreasing basicity). As pH declines, so too does the carbonate ion 

concentration ([CO3
2−]; Figure 1). The [CO3

2−] controls the saturation states 

(Ω) of calcium carbonate (CaCO3) minerals such as aragonite and calcite; a 

reduction in [CO3
2−] lowers the Ω values, making these minerals more prone 

to dissolution, and requiring more energy to construct them. These chemical 

changes are known as ‘ocean acidification’. Ocean acidification has negative 

impacts on many marine species, in particular those that build their skeletons 

from CaCO3 such as corals, shellfish, and several important groups of 

plankton (Doney et al., 2009; CBD, 2014), with adverse consequences for 

ecosystems and the services they provide (Hoegh-Guldberg et al., 2017; Hurd 

et al., 2018). Furthermore, ocean acidification reduces the chemical capacity 

of seawater to take up further CO2 in the future. 

 

Drivers of air-sea CO2 fluxes 

Overlying the long-term global trend of net oceanic CO2 uptake, the direction 

and magnitude of air–sea CO2 exchange vary geographically and seasonally 

(Takahashi et al., 2014). The flux direction is controlled by the seawater’s 

CO2 ‘fugacity’ (fCO2) relative to that of the atmosphere. Net transport of CO2 

from air to the surface ocean is favoured by processes that reduce seawater 

fCO2, such as cold temperatures, which increase CO2 solubility, and 

biological production (photosynthesis), which converts DIC into organic 

matter, thus ‘creating space’ for further CO2 uptake from the atmosphere 

(Humphreys et al., 2018). Outgassing of CO2 (i.e. net sea-to-air transfer) also 

occurs in several ocean regions, and is favoured by processes that increase 

seawater fCO2, such as: warming temperatures, upwelling of CO2-rich deep 

waters into the surface ocean, and biological respiration and decomposition 

of organic matter. 
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Figure 1:. Relationship between seawater pH and the relative concentrations of the 

constituents of Dissolved Inorganic Carbon (DIC): aqueous CO2, bicarbonate ions 

(HCO3
−) and carbonate ions (CO3

2−). At typical seawater pH, a little over 8, about 90% of 

DIC is in the bicarbonate form, ~10% is carbonate, and <1% is aqueous CO2. Adding 

more CO2 increases its relative concentration, shifting the system to lower pH, and thus 

decreases the abundance of carbonate ions. (Redrawn from Raven et al., 2005.) 

 

Biological processes are the dominant control on seasonal cycles of air-sea 

CO2 exchange in temperate and polar regions, leading to CO2 uptake in the 

productive spring and summer months, and outgassing or equilibrium with 

the atmosphere during the winter. Temperature is a more-important control 

in the tropics and subtropics, leading to a roughly opposite seasonal pattern 

for seawater fCO2 there (high in summer, lower in winter), with a smaller 

amplitude (Takahashi et al., 2009; Fay and McKinley, 2017). 

 

The rate-limiting step for oceanic CO2 uptake overall is transfer from the 

surface ocean into the deep interior. Equilibration of CO2 between the 

atmosphere and surface mixed layer occurs on timescales of the order of a 

year (Jones et al., 2014). Mixing the CO2 deeper into the ocean takes orders 

of magnitude longer, and is facilitated by carbon ‘pumps’ (Volk and Hoffert, 

1985): these include the solubility pump, where CO2 is taken up in cold, high-

latitude waters and transferred into the interior through the thermohaline 

circulation; and the biological pump, where organic matter – formed in the 

surface ocean – sinks, and is converted back into DIC at depth (Giering and 

Humphreys, 2018). 

 

Previous MCCIP reviews 

The oceanic uptake of CO2, and associated process and impacts of ocean 

acidification, were described in MCCIP reports in 2006, 2007−2008, 

2010−2011, and 2013. A decadal overview (Williamson et al., 2017) included 

synthesis information from the Intergovernmental Panel on Climate Change 

5th Assessment Reports (IPCC, 2013, 2014a, b). New developments since 

those reviews are covered here, with focus on the drivers and progression of 

ocean acidification, and changing air–sea CO2 fluxes, in the waters 

surrounding the UK. For the current MCCIP reporting cycle, the biological 
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impacts of ocean acidification are considered in detail in separate background 

papers. 

 

 

Open ocean 

Regardless of where it is emitted, anthropogenic CO2 is mixed throughout the 

Earth’s atmosphere by wind and weather. The increasing CO2 uptake by the 

oceans, and, corresponding pH decline, are therefore global phenomena 

(McKinley et al., 2017). Landschützer et al. (2016) mapped global surface 

ocean fCO2 from 1982 to 2011 using a neural network approach. They found 

that the annual global net oceanic CO2 sink was variable on decadal 

timescales, with a range from about 0.8 to 2.0 Gt of carbon per year (1 Gt = 

one thousand million tonnes). Changing patterns of sea surface temperature, 

themselves likely to be a consequence of climate change, were shown to drive 

an important component of this variability. Over a similar time period, the 

magnitude of the seasonal cycle of sea surface fCO2 also increased, driven by 

stronger seasonal cycles in fCO2 drivers (e.g. temperature), and augmented 

by the lower chemical buffer capacity of seawater at higher fCO2 due to ocean 

acidification (Landschützer et al., 2018). In the Atlantic Ocean, surface ocean 

measurements from Atlantic Meridional Transect (AMT) cruises between 

1995 and 2013 revealed a pH decline at a rate of 0.0013 ± 0.0009 yr−1, 

corresponding to a growth in seawater fCO2 of 1.44 ± 0.84 µatm yr−1, (Kitidis 

et al., 2017a). These changes are consistent with the atmospheric CO2 

increase, indicating that there was no major change in the net CO2 sink for 

the Atlantic as a whole during the observation period, integrated over the 

variety of different marine environments sampled. 

 

The North Atlantic contains more anthropogenic CO2 than any other ocean 

basin, due to the deep-water formation there that effectively transfers CO2 

from the surface into the ocean interior (Sabine et al., 2004; Khatiwala et al., 

2013). This result has been independently confirmed by recent studies (Eide 

et al., 2017; Clement and Gruber, 2018), which have also improved the 

accuracy of our calculations of the total inventory of anthropogenic CO2 in 

the global ocean, and provided a better understanding of the uncertainty in 

these estimates. Focussing on the north-eastern subpolar North Atlantic, as 

sampled by the Extended Ellett Line transect between Scotland and Iceland 

(Holliday and Cunningham, 2013), changes in water mass distributions – 

driven ultimately by atmospheric variability (Pérez et al., 2010) – have 

increased the DIC inventory three times faster than expected from the 

atmospheric CO2 increase (Humphreys et al., 2016). If sustained, these 

changes could reduce the amount of anthropogenic CO2 that can be taken up 

by the north-east North Atlantic in the future, whilst also accelerating regional 

ocean acidification. 

 

While North Atlantic deep-water formation is climatically beneficial in terms 

of exporting CO2 from the surface into the interior ocean, Perez et al. (2018) 

showed that it also causes ocean acidification at depth. Furthermore, 



  

 
CO2 exchange and ocean acidification  

 

 

 
 
 
MCCIP Science Review 2020  54–75 

 

58 

increasing vertical stratification in response to global climate change has also 

been shown to decrease deep water pH in some regions (Chen et al., 2017).  

The consequences of ocean acidification are therefore no longer restricted to 

the surface ocean, but are also beginning to impact marine species and 

ecosystems at greater depths, such as cold-water coral reefs (CBD, 2014; 

Hoegh-Guldberg et al., 2017). 

 

High resolution, autonomous seawater fCO2 measurements from a UK 

mooring at the Porcupine Abyssal Plain Sustained Observatory (PAP-SO) in 

the North-East Atlantic (49°N, 16.5°W) have confirmed that the net air–sea 

CO2 flux is controlled by a combination of interacting physical and biological 

processes (Hartman et al., 2015). Vertical profiles collected at PAP-SO show 

a typical pattern of lower pH at greater depths (Figure 2). This emphasises 

how changes in ocean circulation, such as vertical mixing events, could bring 

high-carbon, low-pH deep waters into the surface layer, thus lowering its pH 

and reducing the net oceanic CO2 uptake. These low-pH deep waters also 

have relatively low Ω values, so their addition to the surface ocean could also 

hinder calcification and enhance CaCO3 dissolution. 

 

 

 
Figure 2: The vertical pH (Total scale) profile at the Porcupine Abyssal Plain Sustained 

Observatory (PAP-SO) in the North-East Atlantic (49°N, 16.5°W) in April 2016 (S. 

Hartman, unpublished data) shows the typical pattern of decreasing pH with depth. 
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Continental shelf seas 

The seawater chemistry in shallow (< 200 m) continental shelf seas like those 

surrounding the UK is generally more variable in space and time than in the 

open ocean, as it is driven by a more complex set of processes (including 

terrestrial influences) operating on smaller scales. This requires observations 

to be carried out closer together and more frequently in order to characterise 

the magnitude of natural variability and determine long-term trends with the 

same level of confidence as for the deep open ocean. Efforts to interpolate 

continuous maps of surface seawater fCO2 from sparse observations have 

therefore only recently begun to include continental shelf seas, for example 

using machine-learning techniques to construct computer-based ‘neural 

networks’ that can infer the surface ocean carbonate chemistry (Laruelle et 

al., 2017), or using multi-linear regressions with variables expected to co-

vary with seawater fCO2 (Marrec et al., 2015). These and other similar studies 

have shown that globally, continental shelf seas – similar to the open ocean 

(Landschützer et al., 2016) – absorb a variable, but increasing, amount of CO2 

from the atmosphere (Laruelle et al., 2018). 

 

The Surface Ocean CO2 Atlas (SOCAT; Bakker et al., 2014) of surface 

seawater fCO2 measurements has formed the basis of many air–sea CO2 

exchange studies (e.g. Laruelle et al., 2017, 2018; Landschützer et al., 2018). 

The SOCAT dataset for the seas surrounding the UK has also continued to 

expand in recent years (Figure 3). Although there are inevitably gaps in the 

coverage, different seasonal cycles can be identified in different regions. For 

example, strong depletion of fCO2 is observed in the Celtic Sea (south of 

Ireland) during the spring and summer months (Figure 3b, c), as biological 

activity transfers CO2 from the stratified surface layer into deeper waters. 

However, the southern bight of the North Sea (to the east of the southern UK) 

retains relatively high fCO2 values throughout the year, since the water 

column in this relatively shallow (< 50 m) area does not stratify (Thomas et 

al., 2004). 

 

The UK Ocean Acidification research programme (UKOA) expanded our 

marine carbonate system data coverage around the UK and in adjacent waters. 

The additional data coverage helped to understand the equilibrium chemistry 

of dissolved CO2 in this region (Ribas-Ribas et al., 2014). Following from 

UKOA, the UK Shelf Sea Biogeochemistry research programme (SSB) has 

further added to the carbonate chemistry dataset available for this region 

(Figure 4; Hartman et al., 2019; Humphreys et al., 2019). As a result, we are 

now able to more accurately constrain air–sea CO2 fluxes across the North-

West European shelf and the associated changes in seawater pH and other 

carbonate chemistry parameters, building on previous knowledge 

summarised by Ostle et al. (2016). Detailed assessments of how physical and 

biological processes combine to enable CO2 uptake in the North Sea (Clargo 

et al., 2015) can therefore now be extended to other parts of the shelf, 

particularly the Celtic Sea. The SSB programme also investigated how 

seafloor sediments modify the carbonate chemistry in their pore waters and 
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exchange this with the overlying water column, further modulating changes 

in the marine carbonate system driven by atmospheric exchange (Kitidis et 

al., 2017b; Silburn et al., 2017). 

 

 
Figure 3: Seasonal measurements of surface seawater fCO2 near the UK from 2010 to 2016 

in the SOCAT version 5 dataset (Bakker et al., 2016): (a) January to March (JFM), (b) 

April to June (AMJ), (c) July to September (JAS), and (d) October to December (OND). 

 

 

 

It is well established that a ‘continental shelf pump’ for CO2 operates in the 

North Sea (Thomas et al., 2004); this means that the relatively high biological 

productivity there imparts extra CO2 to Atlantic waters circulating through 

the area, thus aiding overall oceanic uptake of CO2 from the atmosphere. One 

aim of the SSB research programme (Figures 4–5) was to assess whether a 

similar mechanism operates in other parts of the shelf, such as the Celtic Sea. 
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This would be expected given observed annual net CO2 uptake across the air-

sea interface (Marrec et al., 2015). The presence of a continental shelf pump 

mechanism also raises the question of nutrient supply: we would expect a net 

flux of CO2 off the shelf to be accompanied by additional nutrient loss, which 

cannot be replenished through atmospheric interactions. SSB observations 

over the course of a full annual cycle showed that the Celtic Sea CO2 and 

nutrient cycles were not in steady state over this period, with different total 

inventories from one winter to the next (Humphreys et al., 2019). 

Consequently, a full understanding of how the nutrient supply is sustained 

may requires several years of observations, particularly during winter months 

when the shelf waters are well mixed, such that this interannual variability 

can be resolved. 

 

 
 

Figure 4: Purple dots show the extensive new observations of seawater CO2 chemistry 

collected during the UK Shelf Sea Biogeochemistry research programme. The lines show 

major national maritime boundaries, with that of the UK highlighted in red. 

 

 

Data from observational programmes like UKOA and SSB cover a wide 

spatial area but are relatively restricted in time. They can therefore be 

augmented by repeated observations at single-point time–series sites. For 

example, measurements from the L4 time–series site near Plymouth 

(Cummings et al., 2015) have indicated an almost doubling of the amplitude 

of the pH seasonal cycle from 2009 to 2014 (Figure 5d). This dataset does not 

go back far enough for a detailed analysis of the causes of this effect, nor its 

implications for marine ecosystems; nevertheless, it does match the global 

increase in seawater fCO2 seasonality reported by Landschützer et al. (2018). 

While an increase in the seasonal amplitude of variables like pH is typically 

considered to be of concern to the local marine biota, as they will be exposed 

and forced to adapt to a greater range of chemical conditions, it is important 
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to recognise that changes in the seasonal cycling of different components of 

the marine carbonate system (e.g. pH, hydrogen ion concentration, and 

CaCO3 mineral saturation states) may vary from each other (Kwiatkowski 

and Orr, 2018). It is therefore essential to determine exactly which variable 

directly drives any biological responses to ocean acidification if we are to 

accurately project its future impacts. 

 

 
Figure 5: Recent observations of pH (Total scale, derived from DIC and TA using CO2Sys 

version 1.1) and its variability in the northwest European continental shelf sea. (a)  July-

August data, showing strong horizontal gradients in surface layer pH. The dashed black 

contour (at 200 m depth) marks the edge of the shelf sea. Locations of sampling sites A, L4 

and Stonehaven (Sh) are labelled. Data from the Shelf Sea Biogeochemistry (SSB) research 

programme (Hartman et al., 2019; Humphreys et al., 2019) and the GLODAPv2 data 

compilation (Olsen et al., 2016). (b) Site A in summer in the Celtic Sea shows vertical 

changes in pH in the water column and underlying sediment. Data from SSB (Silburn et al., 

2017).  

 

 
 

Figure 5 – contd. (c) Time-series observations at site L4 off Plymouth reveal a strong 

seasonal cycle in surface layer pH. All data from 2009 to 2015 are shown, normalised to 

each year’s annual mean pH (Cummings et al., 2015). (d) The strength of the seasonal 

cycle in surface layer pH at L4 appears to have increased over the period measured, and 

the seasonal pattern varies from year to year. The mean pH has decreased over the same 

time period. 

Stonehaven 



  

 
CO2 exchange and ocean acidification  

 

 

 
 
 
MCCIP Science Review 2020  54–75 

 

63 

The Scottish coastal observatory site at Stonehaven in the north-west North 

Sea (57.0°N, 2.1°W) is about 5 km offshore from north-east Scotland in a 

water depth of c. 50 m. Hydrographic observations at Stonehaven from 1997 

onwards were more recently augmented by carbonate system and auxiliary 

measurements carried out from 2009 to 2013 inclusive (León et al., 2018). 

These measurements revealed an overall decline in annual mean seawater pH 

of up to 0.1 during this period. This pH decrease was observed consistently 

across the entire depth of the water column (Figure 6). The changes were 

more pronounced during from March to August, with pH values more 

consistent from year to year from September to February. 

 

 
 

Figure 6: Calculated seawater pH (Total scale, derived from DIC and TA using CO2SYS 

XLS version 2.1) at Stonehaven (57.0°N, 2.1°W) from 2009 to 2013 (León et al., 2018). The 

surface layer (1 m depth) and bottom (45 m depth) measurements are shown in the top and 

bottom panels respectively. The top panel (surface) shows the same dataset as Figure 7c. 

Horizontal axis shows month of year. 

 

 

The measurements at Stonehaven were of sufficient temporal resolution (i.e. 

weekly) to reveal seasonality in pH and its chemical drivers (Figure 7). The 

long-term change in the annual mean pH (c. 0.02 / yr) is superimposed upon 
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seasonal variability with a range as high as 0.3 within each individual year. 

The pH increase from April to June (Figure 7c) was primarily driven by a 

corresponding decline in DIC (Figure 7a), itself caused by biological CO2 

uptake during the spring phytoplankton bloom. The modest increase in Total 

Alkalinity (TA) from February to May could also be responsible for part of 

the increase in pH, as increased TA improves the ability of seawater to 

chemically buffer CO2-driven pH changes (Egleston et al., 2010; Humphreys 

et al., 2018). Temperature can also act as an important control on seawater 

pH, with warming during the summer months leading to elevated pH values 

(Humphreys, 2017). 

 
         (a)    (b)          (c) 

 

 
Figure 7: Box plots showing the seasonal cycles of (a) measured dissolved inorganic 

carbon (DIC), (b) measured total alkalinity (TA) and (c) calculated pH (Total scale), all at 

1 m depth at Stonehaven (57.0°N, 2.1°W) from 2009 to 2013 (León et al., 2018). Panel (c) 

shows the same dataset as the top panel in Figure 6. 

 

 

 

Low-salinity waters 

 

In near-coastal waters, such as low-salinity estuaries, a number of simplifying 

assumptions that are made when performing chemical calculations and 

analyses in ‘normal’ open ocean seawater may no longer apply (Turner et al., 

2016). For example, the chemical behaviour of buffer solutions that are used 

to calibrate pH meters (e.g. tris, m-cresol purple) is poorly understood at low 

and intermediate salinities. The chemical equilibrium constants governing the 

oceanic CO2 uptake and magnitude of pH change can also be different in these 

environments. A more-complex, less empirical approach such as Pitzer 

modelling is therefore required (Pierrot and Millero, 2017). Laboratory 

measurements to characterise the chemical behaviour of the pH buffer 

solutions at low and intermediate salinities are ongoing (Müller et al., 2018; 

Müller and Rehder, 2018), but more are still required, and the uncertainties 

in chemical equilibrium constants are not yet well understood. 
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2. WHAT COULD HAPPEN IN THE FUTURE? 

 

Previous MCCIP report  

 

The many studies on the potential future impacts of continuing CO2 increases 

on air-sea exchange and ocean acidification have been assessed by the 

Intergovernmental Panel on Climate Change (IPCC, 2013; 2014a, b). The 

IPCC finding were considered in detail by the previous MCCIP report on 

ocean acidification (Williamson et al., 2017); however, they were not UK-

specific. 

 

Modelling results 

 

The following figures and discussion are based on modelling results from the 

Regional Ocean Acidification Modelling (ROAM) component of the UK 

Ocean Acidification (UKOA) research programme. ROAM used a coupled 

physical-ecosystem model to project future pH and aragonite saturation state 

across the north-west European shelf sea. The circulation model was the 

Nucleus for European Modelling of the Ocean (NEMO; Madec, 2008), which 

includes a wide range of processes considered important in the shelf 

environment (e.g. tidal currents, variable sea surface height). NEMO was 

coupled to the European Regional Sea Ecosystem Model (ERSEM; Blackford 

et al., 2004; Butenschön et al., 2016), which has been widely used to study 

ecosystem dynamics and the impacts of climate change and ocean 

acidification (e.g. Holt et al., 2012; Artioli et al., 2014; Wakelin et al., 2015). 

The ERSEM carbonate system module has been validated against 

observational data for this domain (Artioli et al., 2012). The model was forced 

with data characteristic of the IPCC AR5 Representative Concentration 

Pathway (RCP) 8.5, as simulated by the UK Met Office HADGEM model. 

RCP 8.5 describes a possible climate scenario based on continued high 

greenhouse gas emissions (Riahi et al., 2011). As such, these results could be 

considered to represent a ‘worst case’ scenario. 

 

The ROAM model projects pH decreasing at a mean rate of 0.0036 / yr, 

leading to a drop in mean pH across the shelf of about 0.366 from the present 

day to the year 2100 (Figure 8). Significant spatial variability in the rate of 

pH decline is projected, with changes as fast as 0.005 / yr in some coastal 

areas like the Bristol Channel and the West coast of Denmark, and as slow as 

0.002 / yr in the Celtic Sea. 
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Figure 8: Average surface water pH (Total scale, pHT) from (a) 1990 to 2009, (b) 2020 to 

2039, (c) 2050 to 2069, and (d) 2080 to 2099, modelled for a high CO2 emissions scenario 

(RCP 8.5). Unpublished data from ROAM (Y. Artioli and S. Wakelin). 

 

 

The projected spatial patterns of surface CaCO3 mineral saturation states 

matches that for pH (Figure 9). The ROAM model projects aragonite 

undersaturation of surface waters in the Norwegian Current towards the end 

of this century. However, the uncertainty in projections for this region is 

relatively high due to the strong influence of water influxes from the Baltic 

Sea, which are poorly constrained. 
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Figure 9: Projected mean surface water aragonite saturation state (Ωarag) from (a) 1990 to 

2009, (b) 2020 to 2039, (c) 2050 to 2069, and (d) 2080 to 2099, modelled for a high CO2 

emissions scenario (RCP 8.5). Unpublished data from ROAM (Y. Artioli and S. Wakelin). 

 

 

Aragonite undersaturation in bottom waters is also projected by 2100 under 

the RCP 8.5 scenario (Figure 10), particularly during the summer, and in areas 

with strong seasonal water column stratification, such as the northern North 

Sea (Artioli et al., 2014). The first episodic undersaturation events are 

projected to begin by 2030, and to then become a recurrent but spatially 

restricted feature from the middle of this century. Undersaturation is projected 

to increase significantly in 2070–2080 to become a widespread phenomenon 

by the end of the century, when up to 20% of the North-West European Shelf 

seas may experience undersaturation for at least one month of each year. 

 



  

 
CO2 exchange and ocean acidification  

 

 

 
 
 
MCCIP Science Review 2020  54–75 

 

68 

 
 

Figure 10: Projected area of the North-West European Shelf seafloor covered by water 

undersaturated with respect to aragonite, under a high CO2 emissions scenario (RCP 8.5). 

The line is at annual resolution, while the shaded area shows the range of monthly mean 

values. Unpublished data from ROAM (Y. Artioli and S. Wakelin). 

 

 

The long-term trends in annual mean surface pH and seawater fCO2 in the 

shelf seas are projected to be very similar to those for the open ocean (Figure 

11). This highlights that the major driver of these changes is the ongoing 

increase in atmospheric fCO2. Although the annual mean trends are similar, 

seasonal biogeochemical variability within the shelf sea is greater than in the 

open ocean, and the magnitude of this variability is projected to increase due 

to greater warming on the shelf (Holt et al., 2012). In general, warming of 

seawater increases pH and carbonate mineral saturation states, whilst CO2 

addition decreases them, with the latter effect being dominant in driving the 

overall change in seawater chemistry (Humphreys, 2017). On a global scale, 

a separate model has shown that changes in the seasonal cycling of these 

marine carbonate system variables may be decoupled from each other, and 

different in different regions (Kwiatkowski and Orr, 2018). 

 

Overall, the long-term trend in the marine carbonate system variables are 

projected to be similar in the shelf sea as in the adjacent open ocean (Figures 

8 and 9). However, the amplitude of seasonal cycles in pH and other system 

variables is projected to increase to a greater extent in the European Shelf seas 

(Figure 11), leading them to experience a wider and more variable range of 

chemical conditions towards the end of the century. 
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Figure 11: Left panels: projected temporal evolution of mean surface water pH (a) in the 

North-West European continental shelf, and (c) in the open ocean region shown in Figures 

8 and 9. Right panels: projected temporal evolution of mean surface seawater pCO2 (b) on 

the shelf, and (d) in the open ocean. The lines show annual mean values, while the shaded 

areas show the ranges of monthly mean values, all under a high CO2 emissions scenario 

(RCP 8.5). Unpublished data from ROAM (Y. Artioli and S. Wakelin). 
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As shown in the above schematic, it is not easy to give a single confidence 

value to ‘what is already happening’, since different considerations apply to 

the different aspects discussed in this review.  It is more meaningful for a 

‘confidence’ rating to be expressed in relation to a specific statement (e.g. as 

used by IPCC), than for a relatively wide topic area. The fundamental 

chemistry underlying air–sea CO2 exchange and the pH decline that results 

from anthropogenic CO2 uptake is very well established. The seasonal cycles 

and spatial patterns in the ocean regions that relatively easy to access by 

traditional ship-based expeditions are well-constrained and their main drivers 

understood, having been investigated by a multitude of independent 

techniques with concordant results.  For those reasons, a high confidence 

level overall can be justified for ‘Air–sea CO2 exchange and ocean 

acidification in UK seas and adjacent waters’, based on both high agreement 

and high evidence.  

 

However, there are still significant knowledge gaps for shelf sea carbonate 

chemistry,  including many of the factors affecting local and short-term 

variability.  Furthermore, in regions where historically sampling has been 

more restricted (like the remote, wind-swept and ice-affected Southern 

Ocean) there are significant differences between ship-based flux maps and 

new datasets from autonomous platforms. As these occur only in regions 

where the ship-based flux maps had no real data to work from (and were 

therefore extrapolating rather than interpolating) this is not a true 

disagreement but rather it highlights the need to keep developing these 

autonomous sensing technologies, and running manually or semi-

autonomously sampled observational time-series so their datasets can be 

validated.   
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further strengthened – in order to stabilise atmospheric CO2 at levels that keep 

global warming ‘well below 2.0˚C’. 

 

There is very high confidence in the first order expectation that global mean 

seawater pH and saturation states of carbonate minerals will decrease in 

response to increasing atmospheric CO2. However, specific details of 

regionally resolved decadal trends and changes in interannual and seasonal 

variability are less certain, because they are emergent properties of a complex, 

interactive array of drivers. An important uncertainty in the modelling results 

presented here is how closely our actual greenhouse gas emissions will follow 

the trajectory anticipated by different IPCC scenarios. RCP 8.5 is used here 

as the ‘business as usual’ scenario; RCP 2.6 is arguably now more relevant, 

but was not explored by the ROAM study.  Since there are no other closely 

similar, high resolution models for UK waters, the overall confidence level is 

at best ‘medium’, and possibly ‘low’. 

 

The high importance of relatively small-scale processes in near-coastal 

environments adds uncertainty to model results for these regions that are 

gradually being reduced by improving the spatial and temporal resolution at 

which simulations are carried out, as well as further developing the 

representations of biogeochemical processes that are employed within the 

models. 

 

 

4. KEY CHALLENGES AND EMERGING ISSUES 

 

Three of the most important challenges that need to be addressed in order to 

provide better advice to policy makers are: 

 

1.  Sustaining time–series observations of the marine carbonate system at 

key point sites and transects, and improving high resolution 

monitoring of the near-coastal marine environment; 

2.  Developing accurate and stable autonomous observing technologies 

for pH and related variables, deploying them in difficult-to-sample 

regions, and linking and analysing their measurements effectively 

with other data streams; 

3.  Improving the spatial and temporal resolution of models, along with 

their descriptions of biogeochemical processes, to capture the 

relatively small-scale controls on the marine carbonate system in 

complex coastal and shelf sea environments. 
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