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EXECUTIVE SUMMARY 

 

• UK deep-sea habitats are currently undersampled compared to shelf 

ecosystems, e.g. the North Sea. 

• There are no consistently sampled long-term (>30 years) datasets 

from UK deep-sea habitats that document the extent of natural 

environmental and biological variability over time.  

• UK deep-sea habitats are, and will continue to be, exposed to climate-

driven changes, including: variability in food supply, temperature, 

oxygen, pH and hydrographic features.  

• UK deep-sea habitats have been subject to inter-decadal variability in 

temperature and accumulation of atmospheric CO2 throughout the 

water column.  

• The Aragonite Saturation Horizon (ASH) has shoaled by 10–15 m in 

the subpolar North-East Atlantic. 

• Models predict that Particulate Organic Carbon (POC) flux to the 

seafloor in the Atlantic will decrease by up to 15%, resulting in a 

reduction in benthic biomass of 7% (under Representative 

Concentration Pathway (RCP) 8.5). 

• Models predict a decrease in pH of 0.2 units below 500 m in the North 

Atlantic, shoaling of the ASH (>1000 m) and exposure of ~85% of 

cold-water corals in the North-East Atlantic to corrosive waters by 

2060. 

• Sustained observatories and monitoring programmes are urgently 

required in UK deep-sea habitats, both at the seafloor and in the water 

column,  to better understand variability of both environmental 

conditions and biological communities in time and space, and to 

detect and monitor the impact of climate change. This will enable 

more-accurate future climate-change predictions and can support 

progress in conservation measures for the deep sea through the 

development of appropriate management measures for Marine 
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Protected Areas (MPAs) and improvements to long-term biodiversity 

monitoring programmes to assess and mitigate for anthropogenically-

induced changes in biodiversity status. 

 

 

 

1. INTRODUCTION 

 

Deep-sea habitats are classified as being below 200 m water depth, or those 

beyond the continental shelf break. In UK waters, the maximum depth of 

deep-sea habitats is ~2200 m, located in the Rockall Trough (Figure 1). A 

wide diversity of seafloor habitats and geological features occurs in UK 

waters, including submarine canyons, seamounts, cold-water coral reefs and 

gardens, sponge aggregations and soft-sediment habitats (Figure 

1).  Evidence for fluid venting at the seafloor within UK waters has also been 

documented, specifically in the Porcupine Seabight, Rockall Plateau and 

Darwin Mound regions (Hovland, 1990; Masson et al., 2003). In 2013, the 

first evidence of chemosynthetic fauna associated with fluid venting in UK 

waters came to light (Oliver and Drewery, 2013), which was further explored 

via camera survey in 2015 (Neat et al., 2018).  

 

In addition to seafloor habitat, the overlying water column (pelagic zone) also 

provides habitat for biological communities. Specific deep-sea habitats within 

the pelagic zone include the mesopelagic, with a depth range of 200 m to 1000 

m, and the bathypelagic, with a depth range of 1000 m to 4000 m.  Together 

the meso- and bathy-pelagic zones represent a vast habitat for zooplankton, 

which includes both the holo- and mero-plankton (resident and larval 

zooplankton), micronekton, cephalopods, fish and sharks, marine mammals 

and reptiles. Many of these animals may be resident to UK waters, whereas 

some will also be visitors undertaking migrations. Deep-sea communities 

living within both the pelagic and benthic realms consist of a diverse range of 

fauna, in terms of both size and species diversity, including: archaea, bacteria, 

fungi, foraminifera, invertebrates, vertebrates and marine mammals. 
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Figure 1: Map of Marine Protected Areas (MPAs, blue polygons) and deep-sea specific 

MPAs (purple polygons), within offshore waters of the UK extended continental shelf claim 

(including joint inshore/offshore sites). Photographs represent the diversity of seabed 

habitats and communities within the deep-sea MPAs. Map and Images from Defra/JNCC. 

Bathymetry from World Ocean Base (Esri). Copyright: UKCS: Contains public sector 

information, licensed under the Open Government Licence v.3.0, from the United Kingdom 

Hydrographic Office.  

 

Despite  technological advances in survey and sampling equipment (see 

Hughes and Narayanaswamy, 2013, Danovaro et al., 2014), optics, image 

processing and the use of ‘deep learning’ in image analysis (Schoening et al., 

2012; Ismail et al., 2018; Lu et al., 2018; Siddiqui et al., 2018) our knowledge 

of deep-sea habitats is still limited in relation to the extensive area of 

unexplored UK waters. To illustrate this paucity of knowledge, records were 

extracted from the Ocean Biogeographic Information System (OBIS: 

iobis.org) for two key phyla, echinoderms and polychaetes, and were 

compared for the UK deep sea (depth range 200–2215 m) and the North Sea 

(depth range 20–162 m). Records of both echinoderms (Figure 2a) and 

polychaetes (Figure 2b) were higher in the North Sea than in UK deep-sea 

habitats (Table 1). 

    
Table 1: Number of OBIS records of echinoderms and polychaetes for both UK deep-sea 

habitats (200 m–2215 m) and the North Sea (20 m–162 m) 

 

 UK Deep-Sea  North Sea 

Polychaete records 2236  32 752 

Echinoderm records 860  4910 
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Figure 2a: Ocean Biogeographic Information System (OBIS: iobis.org) presence records 

for echinoderms within the UK extended continental shelf claim for UK deep-sea waters 

(purple symbols) and the North Sea (yellow symbols).  

  

 
Figure 2b: Ocean Biogeographic Information System (OBIS: iobis.org) presence records 

for polychaetes within the UK extended continental shelf claim for UK deep-sea waters 

(green symbols) and the North Sea (purple symbols). (Map from Defra/JNCC.) 
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Although significant knowledge gaps remain in the UK deep sea, sufficient 

evidence has been collated to support designation of 14 deep-sea Marine 

Protected Areas (MPAs) around the UK for the protection of benthic habitats. 

Two Special Areas of Conservation (SAC) in the Scottish offshore were 

designated in 2008 and 2011 under the EC Habitats Directive (Darwin 

Mounds and North West Rockall Bank SACs). Since the 2013 MCCIP Report 

Card, four additional Special Areas of Conservation in the Scottish offshore 

and UK’s extended continental shelf claim were designated in 2013. Further 

to this, six Nature Conservation MPAs were designated in 2014, and two 

Marine Conservation Zones (MCZs) in English offshore waters in 2013 and 

2019, under the Marine & Coastal Access Act 2009 (Figure 1). In addition, 

the North East Atlantic Fisheries Commission (NEAFC) has implemented 

closures to bottom trawling to protect vulnerable marine ecosystems in five 

areas of the NEAFC Regulatory Area located within, or partially within, the 

UK extended continental shelf claim (Recommendation 19 2014: 

http://extwprlegs1.fao.org/docs/pdf/mul165665.pdf).  

 

Deep-sea habitats and their associated communities are an integral part of a 

healthy ocean and provide valuable ‘ecosystem services’. In UK waters, cold-

water corals in the North-East Atlantic provide important habitats for fish 

(Costello et al., 2005; Milligan et al., 2016) as seen on the Hebrides Terrace 

Seamount, where the stony coral Solenosmilisa variabilis provides refuge for 

skate eggs (Henry et al., 2016). Cold-water coral reefs are also important 

reservoirs for, and hotspots of, deep-sea biodiversity, for example Freiwald 

and Roberts, (2005) found that species richness and abundance of fish in the 

North-East Atlantic was greater on Lophelia pertusa reefs than on the 

surrounding sediment. Deep-sea habitats and communities are also important 

for the remineralisation of organic carbon and recycling of nutrients, carbon 

sequestration, and the provision of resources, e.g. oil and gas, and 

commercially exploited food, e.g. fisheries (Armstrong et al., 2012; Thurber 

et al., 2014). Recently, deep-sea sponges have been found to harbour 

important anti-microbial bacteria (Xu et al., 2018). Changes to deep-sea 

habitats as a result of climate impacts will likely have an impact on the 

ecosystem services currently provided by the deep sea. 

 

In order to confidently attribute changes in deep-sea habitats to climate 

change, it is essential to determine natural variation within these systems and 

establish baselines, and these require long-term temporally resolved 

observations from time–series studies.  Two benthic time–series studies have 

been carried out by deep-sea scientists from the UK. John Gage and co-

workers at the Scottish Association of Marine Science, formerly the SMBA, 

established ‘Station M’ at a water depth of 2200 m in the Rockall Trough in 

UK waters. ‘Gage Station M’, as it is now known, was sampled on an annual 

basis from 1973 to 1995 and has since been repeated by Narayanaswamy in 

2013, 2015 and 2016. In parallel, the Ellett line, initiated in the Rockall 

Trough and now extending to Iceland, is a hydrographic time series 

established by David Ellett in 1975 (Holliday and Cunningham, 2013).  
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Outside of UK territorial waters, to the south-west of Ireland, the Porcupine 

Abyssal Plain Sustained Observatory (PAP-SO), established in 1989 at a 

depth of 4850 m, undertakes regular sampling and observations of the water 

column and seafloor (Lampitt et al., 2010). More recently, a shorter time–

series study (four years) has monitored cold-water coral abundance and 

diversity on the Irish margin (Boolukos et al., 2019). These time–series 

records have been instrumental in understanding deep-sea habitats, their 

ecology and how these systems function and interact with the environment. 

Additionally, insight into how deep-sea communities have responded to 

climate change prior to modern deep-sea observational science can be gained 

from the geological record. However, this is only possible for certain taxa, 

e.g. scleractinian corals, ostracods and foraminifera. 

 

Deep-sea habitats are inextricably linked to the environment. Multiple 

environmental variables affect deep-sea habitats, which may be further 

influenced by the effects of climate change in the future. Particularly relevant 

to deep-sea habitats in the UK are: (1) primary production in the surface 

waters, (2) temperature, (3) oxygen, (4) pH, and (5) hydrographic features. 

Changes to these environmental variables will likely affect viable larval 

recruitment, population dynamics, community structure and ecosystem 

functioning of UK deep-sea habitats.  

 

 

Primary production 

 

The majority of deep-sea communities meet their energetic requirements via 

primary production originating in the overlying surface waters. The vertical 

flux of Particulate Organic Carbon (POC) to the seafloor is an important 

parameter in regulating the standing stock (biomass and abundance), 

biodiversity and activity of deep-sea organisms from bacteria to megafauna 

(Rex et al., 2006; Vadaro et al., 2009; Woolley et al., 2016. There is a high 

degree of natural variation in the quantity and quality of POC reaching the 

seafloor, which results in a high degree of variation in both the structure and 

functioning of deep-sea communities (Wolff et al., 2011; Woolley et al., 

2016; Laguionie-Marchais et al., 2016). Climate-induced ocean warming 

could lead to enhanced ocean stratification, reducing nutrient input to the 

upper euphotic zone and subsequently reducing the export of POC flux to the 

seafloor (Chust et al., 2014; Doney et al., 2014), which could lead to 

reductions in biomass of fauna at the seafloor (Jones et al., 2014). 

 

More recently, it has been demonstrated that microbial and archaeal fixation 

of dissolved inorganic carbon provides a substantial pool of new organic 

carbon, which is thought to sustain the mesopelagic, bathypelagic and 

sedimentary microbial food webs in the North Atlantic (Reinthaler et al., 

2010; Guerrero-Feijóo et al., 2018). 
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Temperature 

 

Global mean sea-surface temperatures (the upper 75 m of the water column) 

have increased by 0.11°C per decade between 1971 and 2010 (IPCC, 2014) 

but temperatures in the deep sea are generally thought to be low and stable 

(McClain et al., 2012; Levin and LeBris, 2015). However, the 

Intergovernmental Panel on Climate Change Assessment Report 5 (IPCC, 

2014) states that it is “virtually certain that the upper 700 m of the ocean 

warmed from 1971 to 2010, and it is likely that the ocean warmed from depths 

of 700 m to 2000 m from 1957 to 2009, and from depths of 3000 m to the 

seafloor from 1992 to 2005.” Many biochemical and organismal processes 

are controlled by temperature, and metabolic rates of marine species are 

known to increase with temperature (Hochachka and Somero, 2002). The 

geological record has also demonstrated that temperature is considered to be 

a key environmental stressor for deep-sea communities at the higher and 

lower ends of the temperature scale in the deep sea (Yasuhara and Danovaro, 

2016). 

 

Oxygen 

 

Oxygen is an essential requirement for respiration, sustaining metabolic 

processes and growth (Pörtner and Knust, 2007). However, dissolved oxygen 

has declined in the global ocean since the 1960s (IPCC, 2014; Oschlies et al., 

2018) and oxygen is predicted to decrease further during the 21st century in 

response to warming sea-surface temperatures because oxygen is less soluble 

in warm waters (Mahaffey et al., 2020). 

 

pH 

 

Increases in ocean acidification (lowering of seawater pH via an increase in 

hydrogen ions) have been predicted by Earth system models under all 

Representative Concentration Pathways (RCPs; IPCC, 2014). Seawater pH 

has already decreased by 0.12 units compared to pre-industrial levels, as a 

result of absorption of anthropogenic CO2 emissions by the oceans (Gattuso 

et al., 2015; Perez et al., 2018). The lowering of pH in the ocean results in a 

reduction and decreased saturation state of carbonate ions, which can lead to 

shoaling of the ‘aragonite saturation horizon’. Most calcifying organisms live 

above the aragonite saturation horizon, where calcium carbonate does not 

readily dissolve. Therefore, lowering of ocean pH, and the resultant effects 

on the aragonite saturation horizon, are likely to affect a number of deep-sea 

habitats and organisms including: cold-water corals, foraminifera, 

echinoderms and molluscs. These organisms use calcium carbonate (CaCO3) 

to build their skeletons and shells, and ocean acidification will likely lead to 

their dissolution and decreased calcification. Lower pH has also been shown 

to lead to depressed feeding activity in deep-sea demosponges (Robertson et 

al., 2017). 
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Hydrographic features 

 

Many deep-sea benthic organisms produce larvae, that spend time in the water 

column (known as the ‘planktonic larval duration’) before settling to the 

seafloor as an adult. The planktonic larval duration can range from days to 

months. Whilst in the water column, planktonic larvae are exposed to 

different hydrodynamic conditions at different depths, examples of which 

include regional currents, internal waves, tidal currents and both upwelling 

and downwelling of water masses. The success and health of deep-sea 

communities and habitats is related to the successful recruitment and 

settlement of offspring, which could be adversely influenced by climate-

induced changes to hydrodynamics. 

   

Hydrographic features are also known to play a role in the delivery of POC 

to deep-sea habitats and the subsequent biogeochemical cycling of organic 

matter. For example, neap-spring tidal cycles at the PAP-SO have been shown 

to affect the aggregation of particles and biogeochemical cycling of organic 

matter in the benthic boundary layer (Turnewitsch et al., 2017). Similarly, a 

hydraulic jump or downwelling has been demonstrated to bring fresh particles 

(food) to cold-water corals (Davies et al., 2008; Roberts et al., 2009; Soetaert 

et al., 2016). Turbulence has also been shown to deliver oxygen rich waters 

to seafloor communities (Cyr and van Haren, 2016). 

 

 

2. WHAT IS ALREADY HAPPENING?  

 

Primary production 

 

In the North-East Atlantic, shifts in phytoplankton community composition, 

abundance and distribution have been revealed by the Continuous Plankton 

Recorder surveys (Beaugrand 2009; Hinder et al., 2012; Rivero-Calle et al., 

2015; Martinez et al.; 2016) and increases in phytoplankton, specifically 

diatoms and coccolithophorids, have been observed (Beaugrand 2009; Hinder 

et al., 2012; Rivero-Calle et al., 2015). These shifts in phytoplankton have 

been coupled to shifts in community composition, abundance and distribution 

of zooplankton and higher trophic levels and linked to increased temperatures 

(Beaugrand 2009; Hátún et al., 2009). Changes in phytoplankton and 

zooplankton communities will directly affect the flux of POC through the 

water column to the deep-sea floor, having an impact on both deep pelagic 

and benthic communities, e.g. from microbes to large vertebrates and 

sediment dwelling invertebrates. 

 

Although not a UK deep-sea habitat, the Porcupine Abyssal Plain (PAP) has 

provided evidence of inter-annual variation in the quantity of POC arriving at 

the seafloor over two decades between 1989 and 2005 (Lampitt et al., 2010), 

which have been linked to the North Atlantic Oscillation (Smith et al., 2009). 

Megafaunal invertebrate densities have varied by several orders of magnitude 
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over this time period and have been linked to the changes in POC flux (Billett 

et al., 2010). Inter-annual variation in faunal composition for polychaetes was 

also noted between 1991 and 1999, and was synchronous with changes in 

larger megafauna, specifically holothurians (Laguionie-Marchais et al., 

2013). Changes in seafloor community structure are likely to have 

consequences for carbon cycling and organic matter remineralisation, for 

example, at the PAP during a period when megafaunal densities were high, 

the surface sediment was turned over in less than four months (Ginger et al., 

2001).  

 

The PAP time-series has provided important insights into how deep-sea 

communities vary over inter-annual time-scales but there is uncertainty as to 

whether or not this variability is a direct result of climate change or if it 

represents natural variability. Henson et al., (2016) concluded that in order to 

detect a climate change trend in primary production in the surface waters, 32 

years of continual sampling is required. The PAP time–series study now 

reaching its 30th year, but there have been gaps in sampling during this period 

and so it is not continuous. Furthermore, there is currently no comparable 

dataset for the variety of deep-sea habitats that exist within the UK continental 

shelf. Although Station M in the Rockall Trough was sampled continually 

from 1973 to 1995, it has not been sampled continuously since, and work is 

still ongoing to analyse those samples. 

  

Temperature 

 

Within UK deep-sea habitats, bottom-water temperatures range from sub-

zero, –0.7°C at 800 m in the Faroe Shetland Channel to ~ 4.5°C at 2300 m in 

the Rockall Trough (Bett, 2001; Holliday et al., 2015). In the mesopelagic 

zone at 200 m, temperatures are higher at 7–9°C (Bett, 2001; Holliday et al., 

2015). Regular time–series sampling of surface waters in the Rockall Trough 

has been carried out since 1948 by Ocean Weather Ships, the Extended Ellett 

Line time–series records and more recently with real-time observations by 

ocean gliders (Sherwin et al., 2012).  From these observations three specific 

periods have been noted: a warmer period from 1945 to 1972 with surface 

temperatures of ~9.6°C, followed by a cooler period with temperatures of 

~9.1°C, and a warmer period since 1995 with temperatures of ~10°C 

(Sherwin et al., 2012). However, it is not possible to determine if this is 

attributable to climate warming or inter-decadal natural variability (Sherwin 

et al., 2012). Surface-water temperature changes in the Rockall basin are 

linked to movement and exchange of water masses in the North Atlantic 

(Sherwin et al., 2012). Early observations of temperatures at 400 m in the 

Rockall Trough were ~1°C higher during the period 1948 to 1965 than 

between 1876 and 1915 (Smed, 1949; Ellett and Martin, 1973; Sherwin et al., 

2012). Periodic shifts in temperature regime within the North-east Atlantic 

have been coupled with changes in phytoplankton and zooplankton 

communities (Beaugrand, 2009; Hátún et al., 2009), with potential 

implications for the POC flux.  
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Oxygen 

 

Currently the North-east Atlantic Ocean is well-oxygenated compared to 

other oceanic regions (Sweetman et al., 2017). Oxygen concentrations within 

the Rockall Trough are in the range of 6.2 mg/litre to 8.4 mg/litre (McGrath 

et al., 2012) and bottom-water oxygen concentrations in the Porcupine 

Seabight and Rockall Trough are in the region of 5.7 mg/litre to 7.1 mg/litre  

(Dullo et al., 2008; Henry et al., 2014; Cyr and van Haren, 2016). 

Furthermore, in the Whittard canyon, which intersects the Celtic Sea, 

dissolved oxygen was found to range from 4.8 mg/litre to 10.4 mg/litre over 

a period of 22 days (Hall et al., 2017). These concentrations are not 

considered to be hypoxic (i.e. < 2 mg/litre). However, there is some evidence 

that low oxygen concentrations could be stressful for certain species of UK 

deep-sea cold-water coral. For example, Desmophyllum pertusum, one of the 

main reef-forming corals found within the UK deep-sea, is typically found in 

areas with ambient dissolved oxygen concentrations of 6.60 mg/litre to 10.56 

mg/litre, but is not known to occur at concentrations below 3.38 mg/litre  

(Davies et al., 2008). This suggests that decreased oxygen concentrations at 

these levels could have negative effects on this species and associated habitat.  

 

 

pH 

 

Observations and measurements from the Extended Ellett Line in the Rockall 

Trough have revealed accumulation of anthropogenic CO2 throughout the 

water column, at a rate of 2.8 ± 0.4 mg carbon per m3 per year, double that of 

the global mean (Humphreys et al., 2016). This has potential negative 

consequences for the aragonite saturation zone in the area. By comparison, in 

the Irminger Sea the concentration of carbonate ions has decreased, which has 

led to shoaling of the aragonite saturation zone by 10–15 metres per year 

(Perez et al., 2018). In the North-East Atlantic, cold-water coral reefs are 

found at depths of 50–1000 m, above the aragonite saturation zone (located 

below 2000 m; Guinotte et al., 2006; Jiang et al., 2015). However, currently, 

one of the two most-suitable seafloor habitats globally for cold-water corals 

is located within the deeper aragonite saturation zone of the North-East 

Atlantic (Tittensor et al. 2010). Additionally, it has been found that transport 

of carbonate ions (required by reef building corals for their skeletons) to the 

North-East Atlantic deep ocean is now 44% lower than in pre-industrial times 

(Perez et al., 2018). 

  

 

Hydrographic features 

 

A number of studies have highlighted that energetic near bottom processes, 

such as internal tides and waves, hydraulic jumps/flows and enhanced mixing, 

are important mechanisms for the delivery of POC and oxygen to cold-water 

coral reefs, sponge grounds and communities found on seamounts (Davies et 
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al., 2008; Duineveld et al., 2012; Henry et al., 2014; Mohn et al., 2014; Cyr 

and van Haren, 2016; Howell et al., 2016). Furthermore, internal wave 

reflection and sub-inertial waves are known to aid retention of suspended 

particulate organic matter at cold-water coral habitats (Hosegood and van 

Haren, 2004; White et al., 2005; Cyr and van Haren, 2016). In addition, 

tidally generated internal waves are thought to be important mechanisms in 

upwelling nutrients to the surface waters and subsequently driving brief 

pulses of primary productivity above seamounts, which are later exported to 

depth (Turnewitsch et al., 2016; Gove et al., 2019). 

 

Anthropogenic change is altering the mean state of the North Atlantic 

Oscillation (NAO; IPCC, 2014). The NAO is correlated with both current 

strength and circulation in the North Atlantic Ocean (Inall et al., 2009; 

Chafik, 2012; Woolings et al., 2014). Particle tracking models have shown 

that dispersal pathways of Desmophyllum pertusum larvae were consistent 

with circulation pathways within the North-East Atlantic and were strongly 

correlated with the dominant pattern of variability in the NAO (Fox et al., 

2016). When the NAO was in positive phase, connectivity of D. pertusum 

was increased within the UK MPA network (Figure 1). However, when the 

NAO was in negative phase, clusters of the MPA network were isolated and 

larvae were dispersed into the High Seas (Fox et al., 2016). It is therefore 

likely that changes in the mean state of the NAO linked to anthropogenic 

climate change will have implications for dispersal of deep-sea species within 

UK waters. 

 

The Atlantic Meridional Overturning Circulation (AMOC) is one of the 

global ocean’s major circulation systems, and redistributes heat, nutrients and 

oxygen between different regions of the ocean.  During the last 150 years, the 

AMOC has weakened and slowed (Caesar et al., 2018; Thornalley et al., 

2018). The weakening of the AMOC could also have negative implications 

for delivery of oxygen and larval dispersal within UK deep-sea habitats. 

 

 

3. WHAT COULD HAPPEN IN THE FUTURE? 

 

Primary production 

 

Globally, open-ocean primary production will decrease by 2100 (IPCC, 

2014). A high greenhouse gas emission scenario (RCP 8.5) could lead to a 

reduction in primary production of between 6.3% to 8.1% by 2090 (Bopp et 

al., 2013; Yool et al., 2013; 2017). Reduced primary productivity would lead 

to an associated decline in export production, predicted to be in the order of 

7% to 16% (Bopp et al., 2013; Yool et al., 2017). Declining export production 

in turn, could result in a reduction of POC at the seafloor, predicted to be 

around 4% by 2090 under RCP 8.5 (Yool et al., 2017). However, larger 

declines in export production and seafloor POC have also been predicted. For 

example, Yool et al. (2013) predicted a larger decline in export production (at 
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1000 m) of up to 40.7% and attributed this to the associated effects of ocean 

acidification. Sweetman et al. (2017) predicted declines in seafloor POC flux 

from present day to 2100 of between 1.3% to 27% for abyssal habitats, and a 

change of +4.8% to –36.3% for bathyal seafloor habitats in the Atlantic, 

whilst Jones et al., (2014) predicted a global reduction of 11.4% in seafloor 

POC by 2100 (Table 2).  

 

Although predictions of the strength of decline in POC flux both through the 

water column and at the seafloor vary, the consensus is that POC flux to deep-

sea habitats will decline under future climate-change scenarios. Ultimately 

this will result in a reduction of food and chemical energy supply for deep-

sea habitats both in the water column and at the seafloor. 

   

Recent developments in benthic modelling have also enabled scientists to 

predict outcomes of future climate change on deep-sea communities at global 

and regional levels (Kelly-Gerreyn et al., 2014; Jones et al., 2014; Yool et 

al., 2017). Using empirical analysis, coupled with the ocean biogeochemistry 

model NEMO-MEDUSA, Jones et al. (2014) predicted a global decline in 

seafloor biomass of up to 5.2% by 2090 (Table 2). This predicted decline in 

biomass was accompanied by a shift in seafloor community structure, with 

the largest predicted decrease in macrofaunal (250–520 m) biomass, 

followed by megafauna (>10 mm, Jones et al., 2014). Predictions from the 

BORIS model (a size-resolved benthic biomass model coupled to NEMO-

MEDUSA, Yool et al., 2017), were in close alignment with the output 

produced from the empirical analysis of Jones et al. (2014).  

 

Under an RCP 8.5 emissions scenario, Yool et al. (2017) also predicted 

declines in global seafloor biomass between 1990 and 2090 of 0.8% at 200 

m, 7.3% at 500 m, 17.8% at 1000 m, 28.9% at 2000 m and 32.0% at 5000 m. 

In the North-East Atlantic, specifically the Porcupine Abyssal Plain region, a 

19.5% decline in benthic biomass is predicted to occur under an RCP 4.5 

emissions scenario, decreasing further by 38.5% under the RCP 8.5 emissions 

scenario by 2090 (Jones et al., 2014). Furthermore, areas with cold-water 

corals and seamounts, and areas that are heavily fished, are projected to have 

substantial declines in food availability (POC flux) and seafloor biomass by 

2100 (Jones et al., 2014; Table 2). These global and regional (PAP) 

predictions with emphasis on specific habitats e.g. cold-water corals, canyons 

and seamounts, demonstrate that UK deep-sea habitats could be adversely 

affected by the impact of climate change in terms of primary production, by 

2100.  

 

Declines in global seafloor biomass are also predicted for the near future i.e. 

2020 and 2050 (Table 3). Under emissions scenarios RCP 4.5 and 8.5, global 

declines in seafloor biomass are projected to be <1% by the year 2020, 

declining by 3% by 2050, and 5.9% by the year 2080. 
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Table 2: Percentage changes in POC flux and seafloor biomass between 2006–2015 and 

2091–2100 under scenario RCP 4.5 and RCP 8.5. (Data from Jones et al., 2014.) 

 

 POC flux to seafloor Seafloor biomass 

 RCP 4.5 RCP 8.5 RCP 4.5 RCP 8.5 

Global -4.44 -11.4 -2.08 -5.21 

Atlantic -6.86 -15.4 -3.07 -7.23 

Bathyal -4.42 -10.9 -2.26 -5.75 

Abyssal -4.83 -11.9 -2.05 -5.13 

Areas with seamounts -5.44 -13.8 -2.40 -6.06 

Areas with cold-water 

corals 

-10.7 -20.9 -3.78 -8.64 

Areas with canyons -4.85 -11.2 -2.34 -5.64 

Areas with fishing -6.11 -14.5 -2.73 -6.44 

 

 
Table 3: Percentage change in seafloor biomass between 2006–2015 and 2091–2100 under 

RCP 4.5 and RCP 8.5 for 2020, 2050 and 2080. (Data from Jones et al., 2014.) 

 

Year RCP 4.5 RCP 8.5 

2020 -0.77 -0.99 

2050 -2.34 -3.22 

2080 -3.46 -5.85 

 

 

Temperature 

 

The ocean has absorbed > 90% of excess heat in the climate system between 

1971 and 2010 (IPCC, 2014). Approximately 30% of this ocean warming has 

occurred below 700 m and 19% below 2000 m (Balmaseda et al., 2013; 

Talley et al., 2015). Modelled changes in seafloor temperatures in the Atlantic 

are predicted to be within the range of –0.4°C to +1°C for abyssal regions 

(>3000 m) and –0.3°C to +4.4°C for bathyal regions (200 m to 3000 m, 

Sweetman et al., 2017). The lack of continuous time–series observations for 

basic physical parameters such as temperature within the UK deep sea, and 

the lack of knowledge of the thermal tolerance of many deep-sea organisms 

(Yasuhara and Danovaro, 2016) hampers future predictions of the effect of 

temperature on deep-sea communities. However, experimental laboratory 

work and the geological record has provided some insight into the response 

of deep-sea habitats to temperature. The main focus of this work to date has 

been on cold-water corals, i.e. D. pertusum, which is of specific relevance for 

UK deep-sea habitats. The optimal temperature range of D. pertusum is 4–

12°C (Rogers, 1999), however, there is conflicting evidence for the effect of 

elevated temperatures. Mortality has been observed in D. pertusum from the 

Gulf of Mexico at ambient temperature +2°C (Lunden et al., 2014), whilst, 

increased growth rates were observed in D. pertusum from Norwegian reefs 

at ambient temperature +4°C (Büscher et al., 2017). At the Mingulay reef 
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complex POLCOMS-ERSEM models predict that summer water 

temperatures will increase from 9.6°C to 17.25°C at the surface (0–20 m), 

and from 9.3°C to 14°C at 100–120 m water depth, by 2080 (Findlay et al., 

2013), which is at the upper limit of the thermal tolerance of D. pertusum 

(Brooke and Young, 2009). 

 

The geological record has shown that cold-water coral reef-mound 

development varied during glacial-interglacial cycles, with warming bottom-

waters limiting coral growth in the Gulf of Mexico (Roberts and Kohl, 2018). 

Geological studies of cold-water corals within the North-East Atlantic 

(Rockall and Porcupine Seabight) demonstrate that multiple factors are 

important for cold-water coral mound growth during glacial and interglacial 

time periods including: temperature, water mass structure and food supply 

(Raddatz et al., 2014; Bonneau et al., 2018). 

 

Changing ocean temperature will also have a direct influence on larval 

survival, dispersal, population connectivity, community structure and 

regional to global scale patterns of biodiversity (O’Connor et al., 2007; 

Ashford et al., 2018). Many deep-sea species produce larvae with a 

planktonic life stage and temperature is known to be an important determinant 

of planktonic larval duration and development (O’Connor et al., 2007; 

Ouellet and Sainte-Marie, 2018). The rate of early development of D. 

pertusum is temperature dependent, and in a study by Strömberg and Larrson 

(2017) on the larval behaviour of D. pertusum under different environmental 

conditions, development time was found to be 50% quicker at 11–12°C 

compared to 7–8°C. Rising ocean temperatures will also have implications 

for cold-water coral dispersal as planktonic larval development times 

decreases. 

 

Temperature is also an important determining factor for export flux. The 

quantity of particulate organic carbon reaching the deep seafloor is dependent 

on the rate of remineralisation by zooplankton and microbes which degrade 

the sinking POC in the water column, and this remineralisation rate is 

dependent on temperature (Iverson and Ploug, (2013). Furthermore, model 

predictions for declining POC export by 2100 were found to be two-fold 

greater when temperature-driven metabolic changes to microbial respiration 

were taken into account, than for model predictions that did not take these 

effects into account (Cavan et al., 2019). 

 

Oxygen 

 

Declining oxygen in warming oceans poses a serious threat to deep-sea 

habitats. A detailed discussion of the effects of declining oxygen on marine 

organisms can be found in Mahaffey et al., (2020). Dissolved oxygen in the 

Atlantic is predicted to either: (a) remain the same, (b) increase at bathyal 

depths by 0.03 mg/litre or (c) decline by 0.04 mg/litre at both abyssal and 

bathyal depths by 2100 (Sweetman et al., 2017). A decline in dissolved 
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oxygen of 0.04 mg/litre in the Rockall Trough region would result in oxygen 

concentrations of 4.76 mg/litre to 5.66 mg/litre at the seafloor, compared with 

current concentrations of 6.2 mg/litre to 8.4 mg/litre (McGrath et al., 2012).  

 

Not many studies have determined oxygen thresholds for North-east Atlantic 

deep-sea species. Laboratory studies have shown that D. pertusum is not able 

to maintain normal aerobic function below 4.65 mg/litre (Dodds et al., 2007) 

and complete mortality was observed in laboratory experiments with D. 

pertusum from the Gulf of Mexico at dissolved oxygen concentrations of 2.24 

mg/litre (Lunden et al., 2014). However, the predicted decline in dissolved 

oxygen for the Atlantic by 2100 is still within the previously observed lower 

dissolved oxygen threshold of 3.38 mg/litre to 4.65 mg/litre for this species 

(Dodds et al., 2007; Davies et al., 2008; Lunden et al., 2014). The effects of 

declining oxygen will depend on an organism’s sensitivity and tolerance and 

can be compounded by its thermal tolerances (Pörtner and Knust, 2007). 

Small decreases in oxygen below an organisms’ threshold can be 

physiologically challenging, for example in demersal fish (Gallo and Levin, 

2016).  

 

Periods of cold-water coral presence have alternated over geological history 

in the Mediterranean Sea (Fink et al., 2012; Stalder et al., 2018). 

Mediterranean cold-water corals underwent temporary extinction events over 

several periods, when dissolved oxygen concentrations, reconstructed from 

the geological record, fell below 2.85 mg/litre (Fink et al., 2012; Stalder et 

al., 2018). Declining oxygen concentrations in UK deep-sea habitats are 

likely to have consequences for many organisms, particularly since many 

species are not adapted to low oxygen environments. A weakened AMOC is 

likely to impact dissolved oxygen concentrations further. 

 

pH 

 

Models predict that by 2100 the pH at the seafloor in the Atlantic will 

decrease by a maximum of 0.13 units at abyssal depths, and 0.37 units at 

bathyal depths (Sweetman et al., 2017). Predictions for seven fully coupled 

earth system models show that deep-sea habitats below 500 m in the North 

Atlantic region will experience a reduction in pH of 0.20 units by 2100, and 

more than 17% of the North Atlantic will likely be affected (Gehlen et al., 

2014). Palaeo-evidence suggests that the critical threshold for fauna 

experiencing a reduction in pH is a decrease of 0.10 to 0.20 units (Gehlen et 

al., 2014), which indicates that effects on deep-sea fauna could be severe. 

Within their projections ~ 23% of deep-sea canyons and ~8% of seamounts 

are expected to experience a reduction of 0.20 pH units, whilst ~15% of 

canyons and ~3% of seamounts are expected to experience a reduction of 0.30 

pH units (Gehlen et al., 2014). 

 

Perez et al. (2018) also predict that a doubling of atmospheric anthropogenic 

CO2 over the next three decades will reduce the transport of carbonate ions to 
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the deep subpolar north Atlantic by 64 to 79%. The reduction in the 

concentration of carbonate ions will cause the aragonite saturation horizon to 

shoal by 1000 m to 1700 m by 2060 (Perez et al., 2018).  

 

Concomitantly, the AMOC could transfer acidified water southwards, 

endangering UK cold-water corals and other deep-sea habitats. It has been 

estimated that ~85% of the North-east Atlantic cold-water corals are likely to 

be exposed to corrosive waters by 2050 to 2060 (Jackson et al., 2014; Perez 

et al., 2018). Habitat suitability models predict a substantial decrease in 

seafloor habitat suitability for cold-water corals in the northern North Atlantic 

(~30° to 60° N) as a result of predicted changes in ocean carbonate chemistry 

(IS92a, business as usual by 2099, Tittensor et al., 2010).  

 

Results from the Proudman Oceanographic Laboratory Coastal Ocean 

Modelling System (POLCOMS), coupled with the European Regional Seas 

Ecosystem Model (ERSEM), predicts that by 2080 summertime pH will 

decrease by 0.20 units in both surface and bottom waters at the Mingulay reef 

complex (Findlay et al., 2013). Therefore, UK deep-sea habitats are likely to 

be at risk from the effects of ocean acidification, as reductions in pH are below 

the critical threshold established by Gehlen et al. (2014). However, habitat 

suitability modelling also predicts that seamounts could act as refugia for 

certain species of cold-water corals in the North-East Atlantic (Tittensor et 

al., 2010). In geological time there have been several periods of high 

atmospheric CO2, which have led to extinctions of corals and other deep-sea 

fauna and it has been postulated that seamounts acted as temporal refugia for 

both cold-water corals and other deep-sea fauna during these periods (Vernon 

et al., 2008; Tittensor et al., 2010).  

 

Numerous laboratory experiments have investigated the response of cold-

water corals to ocean acidification (e.g. Maier et al., 2009; Hennige et al., 

2014; Lunden et al., 2014). These studies have demonstrated that cold-water 

corals, e.g. D. pertusum, are generally flexible in their response to multiple 

stressors such as warming and ocean acidification, and can maintain positive 

growth rates (Lunden et al., 2014). However, when cold-water corals are 

exposed to conditions of aragonite undersaturation, calcification of the 

skeletons is close to zero and significant changes in skeletal biomineralisation 

have been observed (Hennige et al., 2015; Büscher et al., 2017). Higher 

energetic demands will probably be required in order to sustain calcification 

of cold-water coral skeletons (Büscher et al., 2017). Thus, ocean acidification 

at the seafloor is likely to lead to degradation of UK cold-water coral habitats. 

 

Ocean acidification is also likely to impact other taxa.  

 

Experiments conducted at 650 m at the seafloor revealed increased foraging 

times for the deep-sea echinoid Strongylocentrotus fragilis, being 4.7 times 

longer under high CO2 conditions (0.46 pH units lower) compared to ambient 
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conditions (Barry et al., 2014). Thus, ocean acidification can also lead to 

changes in behaviour, foraging and fitness of taxa. 

Oceanic uptake of anthropogenic CO2 has also altered calcium carbonate 

concentrations at the seafloor. Observations coupled with a rate model have 

demonstrated that significant dissolution of sedimentary CaCO3 has occurred 

in the western North Atlantic compared to pre-industrial times as a result of 

anthropogenic CO2 (Sulpis et al., 2018). Although the North-East Atlantic is 

currently not experiencing high dissolution of sedimentary CaCO3 (Sulpis et 

al., 2018), the acidification of water masses within the Atlantic meridional 

overturning circulation (Perez et al., 2018) could lead to increased dissolution 

of sedimentary CaCO3 within the North-East Atlantic. 

  

Hydrographic features 

 

Reliable predictions of how hydrographic features, such as downwelling, 

internal tides and internal waves could change in the future are lacking. In 

nearshore coastal locations, hydrographic features could be affected via 

stratification. At the Mingulay reef complex, tidal downwelling could be 

maintained or intensified by 2080 if stratification increases (Lowe et al., 

2009; Findlay et al., 2013). Both nearshore- and open-ocean stratification 

could intensify as the ocean warms (Capotondi et al., 2012). In addition, the 

interaction of ocean tides with seabed topography leads to internal waves and 

turbulent mixing, which can also determine the intensity and extent of 

stratification in the ocean (Jayne et al., 2004) and in turn feedback to primary 

production. 

 

Cumulative effects of multiple stressors 

 

Many of the climate induced changes discussed here are inextricably linked. 

Laboratory studies have demonstrated that multiple concurrent stressors, e.g. 

pH, temperature, dissolved oxygen and food availability could be detrimental 

to a species’ survival (Lunden et al., 2014; Hennige et al., 2015; Büscher et 

al., 2017). For example, although increased food availability was shown to 

reduce the impact of ocean acidification on the fitness of D. pertusum 

(Büscher et al., 2017), under an RCP 8.5 emissions scenario, food availability 

(quality and quantity) is predicted to decline alongside increases in seawater 

pH, shoaling of the aragonite saturation horizon, lower oxygen concentrations 

and higher temperatures. This could thus prove fatal for some UK deep-sea 

habitats.  

 

Other concurrent stressors for UK deep-sea habitats include impacts from 

anthropogenic activities, for example: oil and gas extraction, deep-water 

fisheries, and plastic and microplastic pollution. Oil and gas exploration and 

extraction can lead to indirect pressures (e.g. noise and light), direct physical 

pressures (e.g. smothering from drill cuttings and abrasion from drilling rig 

mooring-anchors) and chemical contamination (e.g. from drill cuttings and 

produced water, Cordes et al., 2016). Visible impacts on habitats (with 
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associated reductions in megafaunal density and diversity) have been 

observed at a distance of 100–200 m away from well-heads in the North-East 

Atlantic (Gates and Jones, 2012) and ecological effects on sensitive species 

have been detected at ~ 1–2 km from the discharge source (Paine et al., 2014). 

However, oil and gas projects within Marine Protected Areas are subject to 

the Environmental Impact Assessment process, which includes identification 

of potential impacts and mitigation measures. Furthermore,  resulting 

environmental management strategies to avoid or minimise impact may 

become conditions of operation (Cordes et al., 2016). 

 

Deep-water fisheries for roundnose grenadier, blue ling, anglerfish 

(monkfish) and Greenland halibut occur in UK waters to the west of Scotland 

in the Rockall Trough, and in the Faroe-Shetland Channel (Priede, 2018). 

Bentho-pelagic fishes from the UK and Irish continental slope, including the 

roundnose grenadier, perform an important short-term ecosystem function by 

storing carbon within their biomass over their lifetime, estimated to be 1 

million tonnes of CO2 every year (Trueman et al., 2014). Deep-water fisheries 

within the UK deep sea are subject to commercial exploitation pressures 

(Victorero et al., 2018), which will affect the amount of carbon captured and 

stored by these fish. Additionally, deep-water habitats, primarily sessile, 

fragile communities, such as cold-water coral reefs, may also be impacted by 

commercial deep-water fishing through pressures such as seabed abrasion and 

siltation, particularly from deep-water trawling (Clark et al., 2016) and to a 

lesser extent, long-lining (Fosså et al., 2002; Sampio et al., 2012). The 

introduction of the EU deep-sea access regulation (EU) 2016/2336 has put in 

place a ban on bottom trawling in areas deeper than 800 m, which will reduce 

impact on habitats occurring at these depths. Furthermore, fishing with 

bottom gears below 400 m depth will be prohibited in areas where Vulnerable 

Marine Ecosystems occur or are likely to occur, based on best available 

evidence (Food and Agriculture Organisation of the United Nations, 2009, 

http://www.fao.org/3/a-i5952e.pdf).  

 

There is convincing evidence of ingestion of microplastics by benthic 

invertebrates during the last four decades at Station M in the Rockall Trough 

(Courtene-Jones et al., 2019). Microplastics are known to affect feeding, 

growth, and reproduction of fish and invertebrates (Foley et al., 2018). 

Similarly, deep-sea fish from the Rockall Trough have been shown to 

accumulate persistent organic pollutants, e.g. PCBs in their tissues (Webster 

et al., 2014). The roundnose grenadier and black dogfish had PCB 

concentrations above the environmental assessment criteria (Webster et al., 

2014). Accumulation of microplastics, their associated chemicals and 

persistent organic pollutants could have toxic effects for deep-sea fauna at 

high concentrations.  

 

Specific deep-sea habitats, e.g. seamounts and cold-water corals, have been 

outlined as vulnerable to the effects of climate change (Jones et al., 2014; 

Gehlen et al., 2014). These habitats are also areas where pressures from 
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multiple concurrent stressors are in effect, e.g. fishing and resource 

extraction. Multiple concurrent stressors will likely amplify the negative 

effects of climate change as deep-sea ecosystems are slow to recover as a 

result of long generation times and slow population growth rates. 

 

Socio-economic impacts 

 

Deep-sea environments provide direct economic benefits to society through 

provision of oil and gas, minerals, fisheries and bioprospecting (Armstrong et 

al., 2012; Thurber et al., 2014). Indirect socio-economic impacts include 

sequestration of carbon, nutrient regeneration, waste absorption and 

detoxification (Armstrong et al., 2012; Thurber et al., 2014). However, there 

is limited knowledge on the monetary economic value of the deep sea 

(Folkersen et al., 2018). Proposed changes to the Common Fisheries Policy 

for regulating deep-sea fish stocks outlined in EC COM 371 Final, 2012, was 

predicted to lead to a short-term reduction of landings of fish in the UK of 

6540 tonnes, reducing the value by £3.3 million (Mangi et al., 2016).  A recent 

survey of the Scottish public revealed that the public were prepared to pay on 

average £70 to £77 for protection of deep-sea species and species with high 

potential for medicinal products (Jobstvogt et al., 2014). This demonstrates 

that the public value deep-sea species and environments. Deep-sea habitats 

and ecosystems are clearly valuable as supporting systems for life on Earth in 

addition to the provisioning services they provide. However, there are large 

gaps in our knowledge that prevent a monetary assessment of the value of 

deep-sea habitats (Armstrong et al., 2012). 

 

 

4. CONFIDENCE ASSESSMENT  

 

What is already happening? 
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level of agreement and low amount of evidence concerning how deep-sea 

habitats are currently being affected by climate change. Repeat sampling at 

the PAP has demonstrated that deep-sea communities change in relation to 

variations in food supply, which is driven by the physical environment and 

potentially the NAO. The level of assessment has changed because the PAP 

time–series has not been continuously sampled for a sufficient time-period to 

confidently state that changes in benthic community structure at the PAP are 

driven by climate change. There is a similar level of uncertainty regarding 

changes in deep-sea temperatures along the Extended Ellett Line transect. 

There is good agreement with a low level of evidence for decreasing pH in 

UK deep-sea waters.  

 

Finally, deep-sea habitats in UK waters are generally poorly sampled in time 

and space with the exception of Station M in the Rockall Trough and the 

Mingulay reef complex, although both of these sites lack systematic repeat 

sampling. However, the time–series data from Station M requires further 

analysis and the data from the time–series have not yet been published. There 

is also a lack of detailed knowledge of deep pelagic habitats within UK 

waters. In order to improve confidence in assessment of the current risks of 

climate change to UK deep-sea habitats, comprehensive whole ecosystem, 

e.g. euphotic zone, mesopelagic, bathypelagic, abyssopelagic and benthic, 

time–series stations need to be set up in strategic locations, e.g. important 

commercial fishery and biodiversity hotspots and within MPAs. 

 

 

What could happen in the future? 
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the models provide global or ocean basin level predictions, with few studies 

providing regional predictions, e.g. North Atlantic. Additionally, models 

incorporating the benthos and seafloor are relatively recent and still in 

development. In order to increase the level of confidence in predictions of the 

future effects of climate change on UK deep-sea habitats, further modelling 

studies are required at a local scale, e.g. specifically within UK waters. 

Models predicting the effects of changing POC flux on deep-sea habitats need 

to encompass measurements of POC flux to the seafloor, as current models 

use measured export flux at 100 m below the surface. Experiments 

determining critical thresholds for fauna and their larvae, e.g. for oxygen, pH, 

temperature, could further enhance our understanding of how deep-sea 

habitats will be affected by climate change.  

 

 

5. KEY CHALLENGES AND EMERGING ISSUES 

 

1. There is a need to improve knowledge on the physical environment 

influencing UK deep-sea communities. Specifically, with respect to 

temporal and spatial variability of the hydrographic features 

influencing seafloor communities, how variable are these features 

over days, weeks and annual timescales? There is some limited 

information regarding this for the Mingulay reef complex and on the 

Irish margin (Davies et al., 2008; Duineveld et al., 2012 and Findlay 

et al., 2013; Boolukos et al., 2019). Additionally, how variable is 

temperature, dissolved oxygen, pH and POC flux for UK deep-sea 

habitats? For example, increased knowledge of POC flux reaching the 

seafloor will aid better parameterisation of models, as many current 

models use export flux at 100 m to predict flux of POC to the seafloor, 

which is likely to lead to incorrect assessment of climate impacts. The 

PAP time-series provides insight into POC flux and other 

environmental parameters over decadal timescales but this is outside 

of the UK continental shelf. Time–series stations and observatory 

networks within UK deep-sea habitats and for a variety of different 

habitats are urgently needed. Additionally, in order to predict how 

deep-sea habitats and communities will respond to climate change, in-

situ experiments are required to test responses of deep-sea 

communities to specific and combined stressors. Environmental 

information is key to successful management of MPAs in a changing 

climate see: Gehlen et al. (2014) and Fox et al. (2016). EU and NERC 

funded programmes, e.g. ATLAS (https://www.eu-atlas.org) and 

DEEPLINKS (https://deeplinksproject.wordpress.com) and the 

recently funded iAtlantic (http://www.iatlantic.eu) are providing 

insight into the health of deep-sea ecosystems and best practice on 

management of an ecologically coherent network of MPAs, whilst the 

NERC funded CLASS project (https://projects.noc.ac.uk/class/) will 

continue to provide insight into how deep-sea habitats are changing 

within a changing Atlantic Ocean. 

https://www.eu-atlas.org/
https://deeplinksproject.wordpress.com/
http://www.iatlantic.eu/
https://projects.noc.ac.uk/class/
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2. Knowledge of deep-sea biological communities and ecosystem 

functioning is still lacking for large areas of the UK deep-sea. Co-

evolution of technology and research has led to enhanced 

understanding of biological communities within Monterey Bay 

(Robison et al., 2017), particularly for mid-water species. The 

majority of research in UK deep-sea habitats has focused on seafloor 

habitats and yet the UK deep-sea is undersampled compared to the 

North Sea (Figure 1). The largest habitat in the UK deep-sea by 

volume is the pelagic realm, specifically the meso- and bathy-pelagic, 

and both have been largely overlooked. Fundamental baseline studies 

of UK deep-sea habitats are required in order to better understand and 

predict how UK deep-sea habitats will respond to climate change. In 

conjunction, experimental studies determining deep-sea species 

tolerances to key stressors, e.g. temperature, oxygen, pH and food 

availability are also necessary. 

3. Advances in benthic modelling have revealed for the first time how 

deep-sea benthic biomass will respond to declining primary 

production predicted under future climate change scenarios (Jones et 

al., 2014; Yool et al., 2017). Most model outputs to date have been 

large scale e.g. global or basin scale. Regional predictions are required 

to understand specifically how UK deep-sea habitats will respond to 

future climate change. Models must also take into account multiple 

concurrent stressors, e.g. pH, dissolved oxygen and temperature. 

Models predictions should also take into account pelagic habitats. 
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