Challenge 1. Building the evidence base	through improved data collection and utilisat	ion, and enhanced modelling capability)

1a. Developing existing monitoringSustaining, and expanding monitoring efforts, to continue to track the effects of climate change.

Sustain, and expand observations of the physical environment to:

- *Understand large-scale circulation changes (e.g. AMOC variability vs long term decline).
- *Monitor carbonate system change.
 *Obtain better salinity, temperature, oxygen and stratification data to identify trends (and improve model inputs).
- *Improve Sea-level rise data, including from tide gauge networks and the geological record (e.g. to constrain limits and rates of change).

Sustain, and expand observations of biological systems to:

- *Track climate driven changes in coastal, intertidal, shelf, pelagic and deep-sea benthic communities.
- *Track climate driven changes in birds, inc. in breeding and non-breeding seasons and on prey availability.

1b. Establishing new time-series monitoring programmes

Establishing new long-term datasets to start to identify climate-driven trends across physical, ecological and societal systems.

Better use of autonomous observing technology to:

- *Improve data coverage in hard to sample regions.
- *Compare conditions across sites (e.g. pH and oxygen measurements).

Generate new baseline data to identify climate driven changes to:

- *Monitor long-term species distribution change (e.g. range shifts for marine mammals).
- *Monitor short-term spatial and temporal shifts in species abundance and distribution (e.g. in response to marine heatwaves).

1c. Improving process understanding and representation in models

Improving representation of physical, chemical and biological processes, and their interactions, in models (including how data is assimilated).

Better spatial and temporal data resolution to:

*Improve representation of biogeochemical processes in models. *Inform baselines and boundary conditions.

Better simulation of storms (and storm track), winds, surge and waves to...

- *Reduce uncertainty in storm and wave projections
- *Improve projections of extreme water levels.

Better representation of biological life traits, and trophic links for:

*Higher trophic species, including fish and marine mammals.

Better understanding of bio-physical interactions in transition zones, e.g. at the coast and shelf edge for:

- *Processes affecting geomorphology
- *Processes affecting stratification and oxygen availability.

1d. Refining model outputs

Developing improved projections, with more predictive capability, across a range of spatial and temporal scales, and future scenarios.

Better predictive capability to:

*Improve confidence in near term forecasts of physical change (e.g. SST) and their likely effects on biological systems (e.g. Fish, Plankton, HABs, Pathogens).

Quantify and constrain high end scenarios to:

*Better constrain likely upper limits of physical change (e.g. Sea-level rise).

Long term coastal system response to:

*Predict long-term and large-scale coastal system response to sea-level rise

Regional projections, that factor in other stressors for:

*Assessing impacts on different habitat zones, from the coast out to the deep sea.