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1 Overview 
This report provides validation information for the modelling datasets used in the MSPACE meta-

analysis. The focus of the validation is on the ability of models to represent spatial variability and 

temporal trends on a decadal time scale. The MSPACE meta-analysis compares present state 

against future state by looking at the change in the mean value of each variable at each model grid 

cell, weighted by standard deviation. This means that it is more important for the model to capture 

changes over time and the variation from place to place than to match absolute values of the 

observations, and we have therefore not included dataset bias in our assessments.  

Several models were used to produce the datasets. The validation does not aim to assess the skill of 

the models per se, but to provide an expert judgement on how confident we are in the use of the 

model outputs as applied in MSPACE. This report provides information about the model, the 

evidence base used to assess the model outputs against observed values, and a summary of whether 

we have strong, moderate or weak confidence in the use of different model-derived variables in 

different parts of UK seas. In some cases there was insufficient observational evidence to make an 

assessment, but we have been able to assign a confidence level for most variables. The evidence 

presented here will enable expert users to make a judgement as to whether our assessment is 

appropriate for a particular application of the MSPACE outputs.  

The ultimate driver for all the model outputs used in MSPACE is global climate modelling. This aims 

to simulate large-scale patterns in climate-driven variables, but does not attempt to precisely match 

real-world conditions in any given year in either hindcast or future projections. We therefore only 

consider trends over a period of a decade or longer.  

Except for in the fish species modelling, section 5, only one regional climate model has been used, so 

we were unable to assess inter-model uncertainty and this is not included in the confidence levels 

presented here. The global climate model on which the regional modelling was based, MPI-ESM-LR, 

gives projections for future change in European seas which are low to moderate compared to 

comparable climate models (i.e. the CMIP5 set, which contributed to the 5th Assessment Report of 

the Intergovernmental Panel on Climate Change). The projections should be considered as 

representative of possible future change, with the two climate scenarios RCP4.5 and RCP8.5 giving 

an indication of range, but more extreme change is also possible. 

The tables in section 2 summarise our confidence assessment for each of the variables used as 

inputs to the early warning system. The basis for this assessment is given in sections 3-7, separated 

according to the model that provided the dataset: water column environmental variables produced 

by the POLCOMS-ERSEM pelagic model are in section 3, seabed variables produced by the ERSEM 

benthic model in section 4, fish species abundance produced by the SS-DBEM model in section 5, 

crab (Cancer pagurus) distribution produced by a dedicated DEB model in section 6 and seaweed (S. 

latissima) production from another DEB model in section 7. Model names are given in full in their 

respective sections, along with a brief description of the model and the methods used to validate the 

dataset. The type of analysis and presentation is different for each section, according to the amount 

and nature of observational evidence available.   
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2 Summary of confidence assessment 
 

 

Conservation  

  
UK EEZ England Wales Scotland 

N. 
Ireland 

Surface dissolved oxygen           

Surface sea water pH           

Surface saturation state of aragonite           

Surface sea water potential temperature           

Surface sea water salinity           

Surface thermal front strength           

Heatwave duration           

Water column sum  of phytoplankton carbon           

Net primary production           

Potential Energy Anomaly (stratification)           

Bottom dissolved oxygen           

Bottom non-living organic carbon           

Bottom  saturation state of aragonite           

Bottom sea water pH*           

Bottom sea water potential temperature           

Bottom sea water salinity           

Atlantic cod - Gadus morhua           

Haddock - Melanogrammus aeglefinus           

European hake - Merluccius merluccius           

Common squid - Loligo forbesii           

Common sole - Solea solea           

Saithe - Pollachius virens           

Whiting - Merlangius merlangus           

Blue mussel - Mytilus edulis           

Sediment carbon (available and refractory)           

Depth of the oxygen horizon           

Brown crab - Cancer pagarus           

Common shrimp - Crangon crangon            

European plaice - Pleuronectes platessus           

 

Fisheries 

  
UK EEZ England Wales Scotland 

N. 
Ireland 

Atlantic herring - Clupea harengus           

European bass - Dicentrarchus labrax           

Common squid - Loligo forbesii           
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Whiting - Merlangius merlangus           

Blue whiting - Micromesistius poutassou           

European pilchard - Sardina pilchardus           

Atlantic mackerel - Scomber scombrus           

European sprat - Sprattus sprattus           

Horse mackerel - Trachurus trachurus           

Common shrimp - Crangon crangon            

Atlantic cod - Gadus morhua           

Atlantic halibut - Hipoglossus hipoglossus           

Common monkfish - Lophius piscatorius            

Haddock - Melanogrammus aeglefinus           

European hake - Merluccius merluccius           

Blue mussel - Mytilus edulis           

Nephrops - Nephrops norvegicus            

European plaice - Pleuronectes platessus           

Pollock - Pollachius pollachius            

Saithe - Pollachius virens           

Turbot - Scophthalmus maximus           

Common sole - Solea solea           

Brown crab - Cancer pagarus           

 

Aquaculture 

  
UK EEZ England Wales Scotland 

N. 
Ireland 

Seaweed (sugar kelp - Saccharina latissima)           

Atlantic salmon - Salmo salar           

Blue mussel - Mytilus edulis           

Surface sea water potential temperature           

Heatwave duration           

Surface dissolved oxygen           

Surface sea water pH           

Surface saturation state of aragonite           

Net primary production           

Potential Energy Anomaly (stratification)           

Water column sum  of phytoplankton carbon           

Bottom dissolved oxygen           

Bottom non-living organic carbon           

Bottom  saturation state of aragonite           

Bottom sea water pH*           

Bottom sea water potential temperature           

Bottom sea water salinity           
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3 Environmental variables in the water column (POLCOMS-ERSEM 

pelagic) 
This section gives validation information about the physical and biogeochemical water column 

variables used in the conservation meta-analysis:  

• surface and bottom level dissolved oxygen, temperature, salinity, pH and aragonite 

saturation state 

• column total primary production 

• potential energy anomaly 

• location of thermal fronts  

• column total phytoplankton biomass 

• bottom level organic carbon 

These variables come from the coupled model POLCOMS-ERSEM (described below), used in a 

climate model configuration.  

3.1 Model description: the POLCOMS and ERSEM models 
ERSEM, the European Regional Seas Ecosystem Model (Blackford et al., 2004; Butenschön et al., 

2016), simulates marine biogeochemical cycling and the lower trophic levels of the marine 

ecosystem. It is one of the more complex models of its type and is well suited to modelling coastal 

and shelf sea environments; it has a long track record of use for the North West European Shelf. To 

produce the dataset used here it was coupled to the physical model POLCOMS, the Proudman 

Oceanographic Laboratory Coastal Ocean Modelling System (Holt and James, 2001), which tracks the 

transfer of matter and energy through the system. The climate change signal was applied by using 

outputs from climate models at the atmosphere-ocean surface, at the open ocean boundary and for 

river inputs (see section 3.1.1).  

ERSEM (Figure 3.1) tracks the cycling of carbon, nitrogen, phosphorus and silicate in the marine 

environment. Primary producers are modelled as four functional types of phytoplankton: diatoms, 

which use silicate, and the size-based classes pico-, nano- and micro- phytoplankton. Zooplankton 

are represented as three size-based functional types: heterotrophic nanoflagellates, 

microzooplankton and mesozooplankton. Particulate organic matter is separated into three size 

classes and dissolved organic matter is split in to labile, semi-labile and refractory components. 

There is also a bacterial loop, with one bacterial type. Carbon and nutrients move between all these 

components through processes such as photosynthesis, nutrient uptake and predation; there is fully 

flexible stoichiometry, with no fixed ratios imposed. The carbon to chlorophyll ratio for each 

functional type can also vary depending on the levels of light and available nutrients. A separate 

benthic model handles transfers at the sea bed and within sediment, see section 4 for more 

information. The carbonate system is also included in the model, enabling it to produce outputs such 

as pH and the saturation state of aragonite.  
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Figure 3.1 Schematic of ERSEM, the European Regional Seas Ecosystem Model. Each cube represents 

separate parts of the ecosystem. For example, phytoplankton is represented by four separate 

functional types (green cubes). Fluxes within the ecosystem are represented by arrows. 
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The physical environment was simulated by POLCOMS, a regional circulation model which is able to 

model the varying depths and steep bathymetry of the waters around the UK and has been applied 

to coastal waters globally (Barange et al., 2014; Holt et al., 2009). It uses surface conditions of winds, 

temperature, pressure, and radiation to model water 

circulation and transfers of energy and momentum 

laterally and vertically through the water column. 

POLCOMS is a free surface model with time-varying 

depth, and it includes tides but not waves. The model was 

run on a domain extending over the northwest European 

shelf and the Mediterranean Sea (Figure 3.2), but only 

waters around the British Isles have been included in the 

analysis presented here. The resolution was 0.1° for both 

latitude and longitude (6-11 km); vertically the model 

used a modified-sigma scheme, with 40 vertical points at 

each grid cell regardless of depth, enabling good 

representation of both deep and shallow waters. The 

temperature and salinity outputs from POLCOMS were 

used directly in MSPACE and they also provided the 

environmental conditions for ERSEM, which ran within 

each grid cell of POLCOMS at every time step. 

Model outputs for 2006 to 2099 and further documentation can be found in the Copernicus Climate 

Data Store (DOI: 10.24381/cds.dcc9295c).  

3.1.1 Implementation: scenarios, spatial and temporal scale. 
The POLCOMS-ERSEM coupled model was used to create projections for the 21st century for two 

greenhouse gas concentration scenarios, using the standard IPCC Representative Concentration 

Scenarios (RCPs) (Meinshausen et al., 2011). The moderate RCP4.5 scenario has concentrations 

rising until mid-century then stabilising, under the more extreme RCP8.5 scenario they continue to 

rise throughout the century. The scenarios start in 2006, and for years before that there is a 

“historical” period which uses observed values of atmospheric CO2. Differences between the two 

scenarios emerge from the 2030s onwards. Climate change was applied to the model by using 

surface and ocean boundary conditions from a global climate model taken from the Coupled Model 

Intercomparison Project Phase 5 (CMIP5; Taylor et al., 2011). The global model used was the Max 

Planck Institute-Earth System Model-Low Resolution (MPI-ESM-LR); its projections for future 

conditions in Europe are generally in the low to moderate part of the CMIP5 range.  

Forcing data for the atmospheric surface used MPI-ESM-LR downscaled to a resolution of 0.11° using 

the Rossby Centre Regional Atmospheric Model (RCA4) and taken from the EURO-CORDEX set 

(www.cordex.org). Physical and biogeochemical ocean boundary conditions were taken from the 

global MPI-ESM-LR model. 

River inputs of freshwater, nitrate and phosphate were taken from the hydrological model E-HYPE 

(Donnelly et al., 2016), which was run using inputs from the same global model and a business-as-

usual nutrient scenario. Climatological water and nutrient flows were used at the Baltic boundary, 

and these were kept constant through the modelled period. 

The model was run continuously for 1970-2099, with separate climate scenarios RCP4.5 and RCP8.5 

for 2006 onwards. All model outputs used in the MSPACE analysis were monthly means. 

Temperature and salinity were taken directly from POLCOMS; potential energy anomaly and the 

Figure 3.2: The POLCOMS-ERSEM model 

domain, showing water depth.  

https://doi.org/10.24381/cds.dcc9295c
http://www.cordex.org/
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location of thermal fronts were calculated from daily values of these outputs. Dissolved oxygen, pH, 

primary production, phytoplankton biomass, organic carbon and aragonite saturation state were 

taken from the ERSEM pelagic model. 

The POLCOMS-ERSEM outputs of temperature, salinity, oxygen, pH and primary production were 

used as inputs for one set of the SS-DBEM runs used in the fish modelling (section 5) and for the crab 

and seaweed modelling (sections 6 and 7).  

3.2 Validation methodology 

3.2.1 Validation datasets 
Validation was based on comparison to publicly available observational datasets, supplemented by 

data from project partners, where needed, to fill gaps. The data sources are listed here and 

summarised in Table 3.1.  

Temperature, salinity and oxygen observations were taken from the North Sea Biogeochemical 

Climatology version 1.1 (NSBC, Hinrichs et al., 2017). This is based on data from multiple sources 

including ICES, EMODnet and the World Ocean Database, for years 1960 to 2014, and covers an 

extended North Sea region, 47°N to 65°N, 15°W to 15°E. Additional observations for temperature 

and salinity were taken from the Hydrographic Climatology of the North Sea and Surrounding 

Regions version 2.0 (KNSC, Bersch et al., 2016). This covers the same region as the NSBC and is based 

on the same datasets, however it includes all available temperature and salinity measurements 

whereas NSBC only includes those collected in association with biogeochemical data. Climatological 

gridded mean values (NSBC level 3) were used for comparison of spatial patterns, monthly box-

averages of quality-controlled data (level 2) were used for temporal trends.  

Sea surface temperature (SST) was also compared to satellite observations, using the ESA SST CCI 

and C3S product prepared for the European Space Agency Climate Change Initiative and the 

Copernicus Climate Change Service, and sourced from the Copernicus Marine Service, 

https://doi.org/10.48670/moi-00169.  

Spatial patterns of surface and bottom level pH and bottom level aragonite saturation were 

compared to the Global Ocean Data Analysis Project version 2 (GLODAPv2) mapped product (Lauvset 

et al., 2016).  

Primary production was assessed by comparing to previously published values for the North Sea 

(Capuzzo et al., 2018) and to satellite estimates from the Copernicus Globcolour global product 

(https://doi.org/10.48670/moi-00281).  

Systematic observations of phytoplankton biomass and bottom level organic carbon were not 

available. Surface chlorophyll derived from ocean colour satellite observations was used to give an 

indication of spatial and temporal variability in phytoplankton biomass. The data set used was the 

European Space Agency Climate Change Initiative (ESA-CCI) multi-sensor global ocean colour 

product, sourced from the Copernicus Marine Service, https://doi.org/10.48670/moi-00283. 

 

Table 3.1 Summary of validation data sources. Abbreviations are explained in the text above. 

Variable  Spatial variation Temporal variation Years available 

Dissolved oxygen NSBC level 3 NSBC level 2 1980-2014 

Temperature NSBC level 3,  
satellite SST 

KNSC,  
satellite SST 

1980-2014 
1982-2021 

https://doi.org/10.48670/moi-00169
https://doi.org/10.48670/moi-00281
https://doi.org/10.48670/moi-00283


10 
 

Salinity NSBC level 3 KNSC 1980-2014 

pH GLODAP gridded 
climatology 

see section 3.3.7 1980-2014 

Aragonite saturation 
state 

GLODAP gridded 
climatology 

n/a 1980-2014 

Primary production Globcolour satellite; 
Capuzzo et al., 2018 

Globcolour satellite; 
Capuzzo et al., 2018 

1998-2022 
1988-2013 

Potential energy 
anomaly 

From T and S assessment From T and S assessment  

Location of thermal 
fronts 

From SST assessment From SST assessment  

Phytoplankton 
biomass 

CCI satellite CCI satellite 1998-2021 

Bottom level organic 
carbon 

n/a n/a  

 

3.2.2 Methods used to compare model outputs to observations 
Model-observation comparison was based on UK national areas and the whole UK Exclusive 

Economic Zone (EEZ) (Figure 3.3). Where sufficient observational evidence was available the national 

areas were separated into inshore and offshore sections.  

 

Figure 3.3. National areas within the UK EEZ on the POLCOMS-ERSEM model grid. Inshore areas, 

as defined in national marine plans, are shown in a darker shade. The Hatton area of Scotland, 

outlined in green, is outside the UK EEZ and has not been included in this analysis.  

 

The overall aim of the validation was to evaluate how well the model-derived dataset represented 

spatial variation and temporal trends in the variables used for MSPACE. Where available, a gridded 

climatology of annual mean values based on observations was used to investigate how well the 

model captures observed spatial variation. A model climatology was calculated, matching the time-

period of the observational climatology as closely as possible, and maps of the two climatologies are 

presented side-by side for qualitative comparison. For quantitative analysis, the model and 

observational climatologies were interpolated to the same grid, using nearest-neighbour 
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interpolation to the coarser of the two grids. Then, for each region, the standard deviation for the 

model and observational datasets and the Pearson correlation coefficient between them were 

calculated using all grid points in that region, as follows: 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =  √ 
1

𝑁
 ∑(𝑥𝑖 − �̅�)2

𝑁

𝑖=1

  

𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =  
∑ (𝑥𝑖

𝑚𝑜𝑑𝑒𝑙 − 𝑥𝑚𝑜𝑑𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )𝑁

𝑖=1

√∑ (𝑥𝑖
𝑚𝑜𝑑𝑒𝑙 − 𝑥𝑚𝑜𝑑𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅)2𝑁

𝑖=1 ∑ (𝑥𝑖
𝑜𝑏𝑠 − 𝑥𝑜𝑏𝑠̅̅ ̅̅ ̅̅ )2𝑁

𝑖=1

 

𝑥𝑖
𝑚𝑜𝑑𝑒𝑙̅̅ ̅̅ ̅̅ ̅̅ ̅ , 𝑥𝑖

𝑜𝑏𝑠̅̅ ̅̅ ̅̅  is the climatological mean value of the model or observation at the ith grid point, N is 

the number of grid cells in the region and �̅� is the mean value over all grid cells in the region. 

These values are presented using a Taylor diagram, a polar plot where the distance from the origin 

shows the normalised standard deviation (i.e. the ratio of model to observed standard deviation) 

and the cosine of the polar angles is the correlation coefficient. The observational value is at the 

point (1,0), marked with a star, and the distance from each point to this shows the root mean square 

difference between the model and observation at each point in the region (Jolliff et al., 2009). Thus 

the Taylor diagram gives a summary of the ability of the model to capture spatial variation: the 

closer the marker for each region is to the star at (1,0) the better the match between model and 

observation spatial distribution for that region.  

For variables where sufficient observations were available, the change over time for each spatial 

region was calculated for model and observations. The time period for comparison varied depending 

on the available observations, but was at least two decades. The annual cycle was first removed 

from the data by seasonal decomposition, then linear regression was used to find the rate of change 

of the long-term trend. The tools used for this analysis were the “seasonal_decompose” method 

from the Python statsmodels package and the “linregress” method from scipy.stats. Where a 

statistically significant trend was found (p<0.01) for the model and/or observation timeseries this is 

shown in a table for each variable. 

 

3.3 Validation outcome 

3.3.1 Surface dissolved oxygen 
The model mean surface oxygen for 1980 to 2014 was compared to the North Sea Biogeochemical 

Climatology. The model captures some of the spatial variability seen in the observations, for 

example higher values off East Anglia and in the far north, lower values in the southernmost North 

Sea and to the west (Figure 3.4). However, the model does not show high values in the Irish Sea or 

off the Norwegian coast. The model standard deviation is within about 20% of that observed in most 

regions, but variability is somewhat higher than observed in Northern Ireland, and much lower in 

Wales offshore (Figure 3.5). Model-observation correlation is about 0.5 for the UK EEZ as a whole, 

with Northern Ireland and England inshore having the highest correlation.  
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Figure 3.4 Mean surface dissolved oxygen (mmol m-3) from the POLCOMS-ERSEM model (left) and 

the NSBC observation-based climatology (right). The panel on the far right shows the location of 

observations used to create the NSBC climatology.  

Figure 3.5 Taylor diagram for surface dissolved oxygen, summarising the spatial match between the 

POLCOMS-ERSEM model outputs and values from the NSBC observation-based climatology, for UK 

national marine areas. Values closer to the reference point show better agreement. For information 

about how the diagram was created see section 3.2.2.    

 

The model gives a falling trend over time, consistent with observations, however it is smaller than 

observed, particularly in Scotland (Table 3.2).  

Table 3.2 Temporal trend in surface oxygen (mmol m-3 per decade) for national regions and the UK 

EEZ, 1980-2014. “-” indicates that any trend was not statistically significant; “n/a” means that there 

was too little observational data available to analyse.  

 UK EEZ England Wales Scotland N. Ireland 

POLCOMS-ERSEM model -0.45 -0.46 - -0.47 - 

NSBC observations -3.58 -1.67 - -3.01 n/a 

 

Overall, the model captures some of the spatial variation and underpredicts the small decrease in 

oxygen over a multidecadal period. Confidence is assessed as moderate for England and the EEZ as a 
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whole, lower for Scotland and Wales and with limited data making assessment difficult for Northern 

Ireland.  

3.3.2 Bottom dissolved oxygen 
The model mean bottom level oxygen for 1980 to 2014 was compared to the North Sea 

Biogeochemical Climatology. The model captures some of the spatial variability seen in the 

observations, for example higher values off East Anglia and in the Irish Sea, lower values in the 

southernmost North Sea and to the west (Figure 3.6). Values are lower than observed, especially in 

the far north and the west. The model and observed standard deviation are similar in most regions, 

but larger for England offshore and for Scotland, especially offshore (Figure 3.7). Inshore waters in 

Wales and England have model-observation correlation of 0.8 or above, but the correlation is 

weaker elsewhere.   

Figure 3.6 Mean bottom-level dissolved oxygen (mmol m-3) from the POLCOMS-ERSEM model (left) 

and the NSBC observation-based climatology (right). The panel on the far right shows the location of 

observations used to create the NSBC climatology.  

 

Figure 3.7 Taylor diagram for bottom-level dissolved oxygen, summarising the spatial match 

between the POLCOMS-ERSEM model outputs and values from the NSBC observation-based 

climatology, for UK national marine areas. Values closer to the reference point show better 

agreement. For information about how the diagram was created see section 3.2.2.    
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There is quite good agreement on trend over time everywhere there is sufficient observational data 

to assess it (Table 3.3). The trend is negative everywhere except Northern Ireland, which has no 

significant trend. The trend for England is lower than observed, but comparable to observations for 

the UK EEZ overall, influenced by the much greater trend in Scotland.  

Table 3.3 Temporal trend in bottom level oxygen (mmol m-3 per decade) for national regions and the 

UK EEZ, 1980-2014. “-“ indicates that any trend was not statistically significant; “n/a” means that 

there was too little observational data available to analyse.  

 UK EEZ England Wales Scotland N. Ireland 

POLCOMS-ERSEM model -4.9 -0.76 -0.23 -7.0 - 

NSBC observations -4.3 -2.82 n/a -6.6 n/a 

 

Overall, Scotland shows good temporal agreement with observations but weaker spatial agreement, 

especially in offshore areas. The reverse is true for England, where there is relatively good spatial 

agreement but a weaker trend than observed.  Confidence is assessed as moderate for both nations. 

There is too little observational data to give a confidence score for Northern Ireland; Wales does not 

have sufficient observational data to derive a temporal trend but, given the good spatial agreement, 

confidence is assessed as moderate.  

 

3.3.3 Surface sea water potential temperature 
The model mean sea surface temperature for 1980 to 2014 was compared to the North Sea 

Biogeochemical Climatology and to the larger dataset in the Hydrographic Climatology of the North 

Sea and Surrounding Regions. The range of temperatures is lower than observed, as can be seen 

from the location inside the radius 1 circle on the Taylor diagram (Figure 3.9) and the smaller range 

of values on the climatology plot (Figure 3.8). Spatial variability is well captured, however, with 

lower values in the northern North Sea and the north of Ireland, higher values in the south-west and 

near the coast of continental Europe. Spatial correlation is 0.7 or higher in most regions, the 

exception being Northern Ireland, where in-region differences are not captured.  

 

Figure 3.8 Mean surface temperature (°C) from the POLCOMS-ERSEM model (left) and the NSBC 

observation-based climatology (right). The panel on the far right shows the location of observations 

used to create the NSBC climatology.  
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Figure 3.9 Taylor diagram for surface temperature, summarising the spatial match between the 

POLCOMS-ERSEM model outputs and values from the NSBC observation-based climatology, for UK 

national marine areas. Values closer to the reference point show better agreement. For information 

about how the diagram was created see section 3.2.2.    

 

Satellite observations are available for 1982-2021: this slightly more recent climatology shows a 

similar pattern of spatial agreement (Figure 3.10).  

 

Figure 3.10 Mean sea surface temperature (°C) for 1982-2021, from the POLCOMS-ERSEM model 

outputs (left) and satellite observations (right).  

 

Modelled temporal trends for 1980-2014 are smaller than observed (Table 3.4). In fact, the model 

temperatures are fairly static for most of this period but show a sharper rise for years since 2014 

(Figure 3.11). Satellite estimates, which are available for 1982-2022, show a similar pattern of 

relatively static phases and periods of faster increase, though with the rise occurring some years 

earlier. Given that climate models aim to capture general trends rather than year-to-year 

agreement, this can be considered as good performance.  
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Table 3.4 Temporal trend in sea surface temperature (°C per decade) for national regions and the UK 

EEZ, 1980-2014. “-“ indicates that any trend was not statistically significant; “n/a” means that there 

was too little observational data available to analyse.  

 UK EEZ England Wales Scotland N. Ireland 

POLCOMS-ERSEM model 
1980-2014 

0.03 0.06   - - - 

KNSC observations   
1980-2014 

0.23 0.19 -0.17 0.37 -0.19 

POLCOMS-ERSEM model 
1982-2021 

0.13 0.17 0.14 0.11 0.13 

satellite observations 
1982-2021 

0.26 0.30 0.27 0.24 0.24 

 

 

 

 

 

 

 

 

 

 

Figure 3.11 Smoothed annual mean sea surface temperature anomaly (°C) for UK national marine 

areas, from the POLCOMS-ERSEM model (solid lines) and satellite observations (dashed line). The 

values have been smoothed with a 5-year kernel to show long-term trends. The anomaly is the 

difference from the mean value for 1982-1992.  

 

Overall, the good spatial agreement and rising trends mean that confidence is assessed as strong 

everywhere except Northern Ireland, where it is assessed as weak. It should be noted that the 

temperature rise is lower than both satellite and in situ observations, so the projections should be 

considered at the low end of the possible range of climate change. This is consistent with the parent 

global model having a temperature response in the low to moderate end of the CMIP5 range.  

 

3.3.4 Bottom sea water potential temperature 
The model mean bottom level temperature for 1980 to 2014 was compared to the North Sea 

Biogeochemical Climatology and to the larger dataset in the Hydrographic Climatology of the North 

Sea and Surrounding Regions. The observational temperatures are somewhat lower than observed, 

on average, but spatial patterns are well reproduced: highest in the English Channel and southern 

North Sea, lower in the deeper waters of the northern North Sea and off-shelf (Figure 3.12). The 

model outputs have lower variability than observed (points are mainly inside the radius 1 line on the 

satellite 

model 
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Taylor diagram, Figure 3.13). Northern Ireland and Wales are least well represented, with low 

correlations in both cases.  

Figure 3.12 Mean bottom-level temperature (°C) from the POLCOMS-ERSEM model (left) and the 

NSBC observation-based climatology (right). The panel on the far right shows the location of 

observations used to create the NSBC climatology. 

 

Figure 3.13 Taylor diagram for bottom-level temperature, summarising the spatial match between 

the POLCOMS-ERSEM model outputs and values from the NSBC observation-based climatology, for 

UK national marine areas. Values closer to the reference point show better agreement. For 

information about how the diagram was created see section 3.2.2.    

 

Trends over time are smaller than for sea surface temperature, and there is no significant change for 

much of the region (Table 3.5). Model outputs for Scotland are negative (falling temperatures) 

whereas observations show a rise, and this difference is also seen for the UK EEZ as a whole.  

Table 3.5  Temporal trend in bottom level temperature (°C per decade) for national regions and the 

UK EEZ, 1980-2014. “-“ indicates that any trend was not statistically significant. 

 UK EEZ England Wales Scotland N. Ireland 

POLCOMS-ERSEM model -0.05 - - -0.08 - 
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KNSC obs 0.11 - -   0.50 - 

 

Overall, there is good representation of spatial variability, except for Wales and Northern Ireland, 

but poor representation of temporal trends. Confidence is assessed as moderate for England, weak 

elsewhere and for the UK as a whole.  

3.3.5 Surface sea water salinity 
The model mean sea surface salinity for 1980 to 2014 was compared to the North Sea 

Biogeochemical Climatology and to the larger dataset in the Hydrographic Climatology of the North 

Sea and Surrounding Regions. Spatial patterns are in good agreement, though the model salinity is 

lower than observed for deep waters (Figure 3.14). Variability within regions is higher in the model 

than in observations (points are outside the radius 1 circle on the Taylor diagram (Figure 3.15) but 

spatial correlation is good everywhere (weakest for Northern Ireland). 

 

Figure 3.14 Mean surface salinity (psu) from the POLCOMS-ERSEM model (left) and the NSBC 

observation-based climatology (right). The panel on the far right shows the location of observations 

used to create the NSBC climatology. 

 

Figure 3.15 Taylor diagram for surface salinity, summarising the spatial match between the 

POLCOMS-ERSEM model outputs and values from the NSBC observation-based climatology, for UK 
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national marine areas. Values closer to the reference point show better agreement. For information 

about how the diagram was created see section 3.2.2.    

 

Model values show a slow decrease over time, of about 0.2 psu per decade, whereas observations 

show no change or a small increase (Table 3.6).  

 

Table 3.6 Temporal trend in sea surface salinity (psu per decade) for national regions and the UK 

EEZ, 1980-2014. “-“ indicates that any trend was not statistically significant. 

 UK EEZ England Wales Scotland N. Ireland 

POLCOMS-ERSEM model -0.17 -0.19 -0.17 -0.16 -0.19 

KNSC obs  0.04 - -   0.02 - 

 

The discrepancy in the direction of trend means that the confidence is assessed as moderate in spite 

of the good spatial agreement. For Wales and England there is better agreement on trend, so these 

areas are assessed as strong confidence.  

3.3.6 Bottom sea water salinity  
The model mean bottom level salinity for 1980 to 2014 was compared to the North Sea 

Biogeochemical Climatology and to the larger dataset in the Hydrographic Climatology of the North 

Sea and Surrounding Regions. Spatial agreement is particularly good for offshore areas of England 

and Wales, with correlation 0.95 (Figure 3.17) and similar patterns visible in spatial plots (Figure 

3.16), though observed values are generally higher than the model outputs. Inshore areas of 

Scotland and England also show good correlation, but correlation is poor for offshore areas of 

Scotland and for Northern Ireland.  

 

Figure 3.16 Mean bottom-level salinity (psu) from the POLCOMS-ERSEM model (left) and the NSBC 

observation-based climatology (right). The panel on the far right shows the location of observations 

used to create the NSBC climatology. 
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Figure 3.17 Taylor diagram for bottom-level salinity, summarising the spatial match between the 

POLCOMS-ERSEM model outputs and values from the NSBC observation-based climatology, for UK 

national marine areas. Values closer to the reference point show better agreement. For information 

about how the diagram was created see section 3.2.2.    

 

As seen with surface salinity, the temporal trend for bottom level salinity is to increase in the 

observations but decrease in the model outputs (Table 3.7).  

Table 3.7 Trend in bottom level salinity (psu per decade) for national regions and the UK EEZ, 1980-

2014. “-“ indicates that any trend was not statistically significant.   

 UK EEZ England Wales Scotland N. Ireland 

POLCOMS-ERSEM model -0.14 -0.18 -0.17 -0.12 -0.19 

KNSC obs 0.08 0.04 - 0.07 0.07 

 

There is poor agreement in either spatial or temporal variation for all areas and so the confidence is 

assessed as weak. However, the good spatial agreement for England and Wales should be noted, 

and the variation within these areas may be reliable even if trends are uncertain.  
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3.3.7 Surface sea water pH 
Surface pH was compared to observations from the GLODAP database. These are much sparser than 

those available for oxygen, temperature and salinity (Figure 3.18, right-hand panel), but some 

assessment can be made. Spatial variation in the model is in rough agreement with the GLODAP 

gridded climatology, with lowest values in the shallow waters of the southern North Sea, English 

Channel and Irish Sea (Figure 3.18). The high model values on coast of Denmark and Germany are 

not seen in observations. The model also has high values in the far north but observations are 

missing there – the gridded climatology is interpolated from other areas and may not be reliable. 

The Taylor diagram shows negative correlation for Wales and 0 for England, but these are likely to 

be affected by the lack of observations in the western part of the region.  

Figure 3.18 Mean surface pH from the POLCOMS-ERSEM model (left) and the GLODAP observation-

based climatology (right). The panel on the far right shows the location of observations used to 

create the GLODAP gridded climatology. 

 

Figure 3.19 Taylor diagram for surface pH, summarising the spatial match between the POLCOMS-

ERSEM model outputs and values from the GLODAP observation-based gridded climatology, for UK 

national marine areas. Values closer to the reference point show better agreement. For information 

about how the diagram was created see section 3.2.2.    
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The model values show surface pH falling by 0.012 units per decade over the UK EEZ. The GLODAP 

dataset has insufficient observations to calculate a trend. A global product which uses a machine 

learning approach to extend the coverage (https://doi.org/10.48670/moi-00047) gives a fall of about 

0.016 units per decade for the seas around the UK. OSPAR’s intermediate assessment (OSPAR, 2017) 

cites values of 0.02 units per decade in the OSPAR Maritime area, with 0.035+/-0.014 units per 

decade in the Greater North Sea  (Ostle et al., 2016). 

There is enough information on spatial variation and trend to assess moderate confidence for the UK 

EEZ and Scotland, weak for England; however, there is too little evidence for Wales and Northern 

Ireland. It should be noted that trends in surface pH are somewhat smaller than observed: as for sea 

surface temperature, the projections should be considered at the low end of the possible range of 

climate change/ocean acidification.  

3.3.8 Bottom sea water pH 
Bottom level pH was compared to observations from the GLODAP database. The assessment is 

similar to that for surface pH, above: some correspondence in patterns of variation where 

observations are available, but limited observations for the north and west of the region (Figure 

3.20, Figure 3.21). No observational data on temporal trends are available.  

 

Figure 3.20 Mean bottom-level pH from the POLCOMS-ERSEM model (left) and the GLODAP 

observation-based climatology (right). The panel on the far right shows the location of observations 

used to create the GLODAP gridded climatology. 

https://doi.org/10.48670/moi-00047
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Figure 3.21 Taylor diagram for bottom-level pH, summarising the spatial match between the 

POLCOMS-ERSEM model outputs and values from the GLODAP observation-based gridded 

climatology, for UK national marine areas. Values closer to the reference point show better 

agreement. For information about how the diagram was created see section 3.2.2.    

 

Given the similarity to surface pH, the confidence assessment is the same: moderate for the UK EEZ 

and Scotland and weak for England; too little evidence for Wales and Northern Ireland. However in 

deeper water the correspondence between surface and bottom levels is likely to be less strong and 

the confidence should be treated as uncertain.  

3.3.9 Surface saturation state of aragonite 
Aragonite saturation state at the surface was compared to observations from the GLODAP database. 

It is calculated from the same measurements as pH and so the distribution of observations can be 

assumed the to be the same (Figure 3.22, right-hand panel). Although there is some correspondence 

in spatial variation between model and observations, with lowest values in the English Channel, Irish 

Sea and southern North Sea (Figure 3.22) , correlation is weak everywhere (Figure 3.23).  
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Figure 3.22 Mean surface aragonite saturation state from the POLCOMS-ERSEM model (left) and the 

GLODAP observation-based climatology (right). The panel on the far right shows the location of 

observations used to create the GLODAP gridded climatology. 

 

Figure 3.23 Taylor diagram for surface aragonite saturation state, summarising the spatial match 

between the POLCOMS-ERSEM model outputs and values from the GLODAP observation-based 

gridded climatology, for UK national marine areas. Values closer to the reference point show better 

agreement. For information about how the diagram was created see section 3.2.2.    

 

 Observational data on was insufficient to evaluate temporal trends in pH.  

Overall, the confidence is assessed as weak, but on a low evidence base. Given the lack of 

observations in Wales and Northern Ireland, the confidence for these areas is uncertain.  

 

3.3.10 Bottom saturation state of aragonite 
Aragonite saturation state at the bottom level was compared to observations from the GLODAP 

database. It is calculated from the same measurements as pH and so the distribution of observations 

can be assumed the to be the same. Spatial correlation is 0.7 or better for England and Scotland, 

showing broad agreement overall (Figure 3.25). Some correspondence can also be seen in the spatial 

plots: highest values in the southern North Sea and western Scotland, lower for the northern North 

Sea (Figure 3.24). Agreement is worse for Wales, but the observation-based climatology relies on 

extrapolation from neighbouring areas so is unreliable. No observational data on temporal trends 

are available.  
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Figure 3.24 Mean bottom-level aragonite saturation state from the POLCOMS-ERSEM model (left) 

and the GLODAP observation-based climatology (right). The panel on the far right shows the location 

of observations used to create the GLODAP gridded climatology. 

 

Figure 3.25 Taylor diagram for bottom-level aragonite saturation state, summarising the spatial 

match between the POLCOMS-ERSEM model outputs and values from the GLODAP observation-

based gridded climatology, for UK national marine areas. Values closer to the reference point show 

better agreement. For information about how the diagram was created see section 3.2.2.    

 

Overall the confidence is assessed as moderate, but on a low evidence base. Given the lack of 

observations in Wales and Northern Ireland, the confidence for these areas is uncertain. 

 

3.3.11 Net primary production 
Water-column total net primary production was used as an input to the meta-analysis. Comparison 

to estimates derived from ocean colour satellite data is given here, however the satellite product is 

optimised for the open ocean and may not be reliable in coastal and shallow seas. Comparison to 

estimates of gross primary production for the North Sea is therefore provided as well.  
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Net primary production was compared to satellite-based estimates from a global product 

(Copernicus-GlobColour, https://doi.org/10.48670/moi-00281). Plots of model and satellite average 

values for net primary production show good agreement on spatial patterns, though model-derived 

values are higher and show less variability than satellite estimates (Figure 3.26). Production is 

highest in coastal areas, lower in central areas of the Irish Sea, western English Channel and 

northern North Sea.  

 

Figure 3.26 Mean net primary production (mg C m-2 day-1) for 1998-2022, from the POLCOMS-ERSEM 

model outputs (left) and derived from ocean-colour satellite observations (right). 

 

There is good agreement on the direction of temporal trends: falling production in Scotland and for 

the UK EEZ as a whole, rising in Northern Ireland and little change for England and Wales (Table 3.8). 

The modelled fall for Scotland and the EEZ is smaller than the satellite estimates, but given the 

uncertainty in the satellite values the difference is not large.    

Table 3.8 Temporal trend in column total net primary production (mg C m-2 day-1 per decade) for 

national regions and the UK EEZ, 1989-2022. “-“ indicates that any trend was not statistically 

significant. 

 UK EEZ England Wales Scotland N. Ireland 

POLCOMS-ERSEM model -10 - 9 -15 16 

Satellite-derived  -21 - - -22 14 

 

Model outputs for column total gross primary production were compared to a published study of 

spatial variation and trends for the North Sea (Capuzzo et al., 2018). This study used all available in 

situ measurements of chlorophyll and light attenuation for 1988-2013. Capuzzo et al. divided the 

region into six hydrodynamic zones (Figure 3.27) and calculated the mean productivity and trend 

over time in each zone. Their Table 1 is reproduced below (Table 3.9), with the corresponding model 

values shown in italics below each number. Slope and standard error are only given where the trend 

in annual primary production is significant (p<0.01, denoted by **).  

https://doi.org/10.48670/moi-00281
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The model values are consistently larger than the observation-based values but the spatial variation 

is in good agreement, as can be seen in the similarity in the percentage of production in each of the 

six regions. For both datasets the region of freshwater 

influence and the transitional east zone are highly 

productive, the seasonally stratified zone less so (see also 

Figure 3.28). Model-observation difference is highest for the 

permanently mixed area, for which the model outputs have 

higher productivity than the observation-based dataset.  

Capuzzo et al. found an overall decrease in gross primary 

production for the North Sea, with the strongest trends in 

the transitional zones between seasonally stratified and 

permanently mixed zones. Elsewhere the trend was not 

statistically significant. The trend in the model outputs is 

significant for the western transitional zone, the seasonally 

stratified zone and for the North Sea as a whole (Table 3.9 

and Figure 3.28). Trends in the model outputs are smaller 

than in the observation-based dataset, but agree on the 

declining trend. We conclude that there is agreement 

between the model and observations on a reduction in 

primary production, though the size and location of the 

change differ.  

Table 3.9 Gross primary production for different areas of the North Sea estimated by Capuzzo et al. 

(2018) and by the POLCOMS-ERSEM model. In each box of the table the top number comes from 

Capuzzo et al. (their Table 1), the lower one, in italics, from the model. PP = column total gross 

primary production, SE = standard error. ** denotes a statistically significant trend (p<0.01).  

Region 
 

PP (g C m-2 
year-1) 
 

Area PP (1012 g C year-1) 
 

Annual change in PP (g C m-2 year-1) 
 

 mean SE Mean (%) SE r2 p slope SE 

Seasonally 
stratified 

200 
382 

15 
20 

34.9 (36) 
65.7 (35) 

2.75 
3.42 

0.091 
0.722 

0.134 
0.000** 

 
-2.21 

 
0.28 

Transitional 
East 

354 
510 

54 
23 

27.6 (28) 
42.1 (23) 

4.24 
1.87 

0.299 
0.086 

.0039** 
0.145 

-19.78 6.19 
 

Transitional 
West 

187 
486 

15 
24 

5.8 (6) 
16.4 (9) 

0.47 
0.80 

0.278 
0.597 

.0057** 
0.000** 

-5.38 
-1.78 

1.77 
0.30 

 

Intermittently 
stratified 

268 
526 

20 
22 

16.3 (17) 
29 (16) 

1.24 
1.20 

0.001 
0.059 

0.884 
0.231 

  

Permanently 
mixed 

82 
551 

7 
22 

4.0 (4) 
20.6 (11) 

0.35 
0.81 

0.128 
0.051 

.073 
0.268 

  

Freshwater 
influence 

382 
578 

28 
24 

8.7 (9) 
13.1 (7) 

0.65 
0.54 

0.001 
0.000 

.903 
0.970 

  

North Sea 234 
463 

17 
21 

97.34 (100) 
186.9 (100) 

6.92 
8.5 

0.261 
0.591 

.0076** 
0.000** 

-5.67 
-1.27 

1.94 
0.22 

 

Figure 3.27 Hydrodynamic 

zones of the North Sea, as 

used by Capuzzo et al. (2018).  
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Figure 3.28 Gross primary production for the North Sea, from POLCOMS-ERSEM model outputs. The 

left-hand panel shows the mean value for 1988-2013, the right-hand panel shows the mean annual 

change over the same period. Grey shading indicates no significant change (p>0.01) 

 

Overall, the model reproduces the spatial distribution of primary production well, for both the net 

and gross primary production datasets. There is also agreement on the declining trend in 

productivity, though the trend is smaller for the model outputs than from satellite estimates, and 

not statistically significant in many places. Confidence is assessed as moderate for all regions.  

3.3.12 Potential energy anomaly (stratification) 
Potential energy anomaly is derived from the variation in density over the top 200m. This is 

calculated from temperature and salinity so the assessment of surface and bottom temperature and 

salinity gives a guide to reliability. Confidence in surface values is moderate to strong in most regions 

but poor representation of the observed trends at bottom levels means that confidence in potential 

energy anomaly is assessed as weak.  

3.3.13 Surface thermal fronts  
The location of thermal fronts is derived from modelled sea surface temperature data. The method 

used for front location has been demonstrated to have high accuracy when applied when using 

satellite measurements (Miller, 2009). The confidence in the model-derived dataset can therefore be 

assessed as the same as the confidence in sea surface temperature (section 3.3.3): weak for 

Northern Ireland, strong elsewhere.  

3.3.14 Water column sum of phytoplankton carbon  
There was insufficient observational data on phytoplankton biomass to make a direct comparison to 

the model outputs. Chlorophyll concentration gives an indication of phytoplankton biomass, so 

model outputs have been compared to chlorophyll data derived from ocean colour satellite 

observations.  

The spatial distribution of chlorophyll shows a good match to that observed by satellite. The on-shelf 

values tend to be higher than satellite except close to the coasts; the high satellite values for 

complex waters near river mouths may be unreliable (Figure 3.29).  

 



29 
 

  

Figure 3.29 Mean surface chlorophyll concentration (mg C m-3) for 1998-2021, from the POLCOMS-

ERSEM model outputs (left) and derived from ocean-colour satellite observations (right). 

 

For all areas except England, the model outputs show a falling trend in log-chlorophyll concentration 

over time (Figure 3.30 and Table 3.10). The satellite observations have a rising trend in England, 

Wales and Northern Ireland, falling in Scotland and no change overall.  

 

 

Figure 3.30 Smoothed annual mean anomaly in surface log-chlorophyll (log(mg C m-3)) for UK 

national marine areas, from the POLCOMS-ERSEM model (solid lines) and satellite observations 

(dashed line). The values have been smoothed with a 5-year kernel to show long-term trends. The 

anomaly is the difference from the mean value for 1998-2008. 

Table 3.10 Temporal trend in surface log-chlorophyll concentration (log(mg C m-3) per decade) for 

national regions and the UK EEZ, 1998-2021.  

 UK EEZ England Wales Scotland N. Ireland 

POLCOMS-ERSEM model -0.038 - -0.028 -0.059 -0.048 

satellite obs - 0.035 0.019 -0.026 0.008 

 

The comparison to surface chlorophyll is an indirect measure of column total phytoplankton 

biomass, but it is likely to give a valid picture of spatial and temporal variation. Given the 

discrepancy in temporal trends, confidence is assessed as weak everywhere.  
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3.3.15 Bottom non-living organic carbon  
There was insufficient observational evidence for an assessment to be made.  
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4 Environmental variables in the sea bed (ERSEM benthic) 
This section gives validation information about the benthic variables used in the conservation meta-

analysis: sediment organic carbon and the oxygen penetration depth. POLCOMS-ERSEM model 

outputs were compared to observation-based statistical models. 

4.1 Model description 
As well as the pelagic model described in section 3, ERSEM, the European Regional Seas Ecosystem 

Model, has a separate benthic model (Butenschön et al., 2016).  This is fully coupled to the pelagic 

component and handles transfers of carbon and nutrients at the sea bed and within sediment (see 

Figure 3.1). The benthic model has aerobic and anaerobic bacteria and three feeding groups: filter 

feeders, suspension feeders and meiobenthos. The last of these contribute to mixing through the 

sediment by bioturbation. Oxygen levels in the sediment gradually decrease away from the water 

surface and the oxygen penetration depth is a model output. Sediment organic carbon is separated 

into dissolved organic matter and degradable, refractory and buried particulate carbon; in model 

nomenclature the particulate types are called Q6c, Q7c and Q17c respectively. Any carbon that 

reaches the bottom layer cannot be returned to the water column and becomes buried carbon; it 

should be noted that this variable is not calibrated to represent stocks of buried carbon in real-world 

conditions.  

4.2 Validation methodology 

4.2.1 Sediment organic carbon 
Diesing et al., (2017; 2021) describe a method of estimating sediment particulate organic carbon 

(POC) density (g m-3) with only sparse observations using a quantile regression forest (QRF) 

https://doi.org/10.1007/s10584-011-0156-z
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algorithm applied to a set of predictor variables (Table 1). The resulting maps of predicted carbon 

content in the top 10cm of the bed (Diesing et al., 2017) were compared visually with contour maps 

of total organic carbon from ERSEM. In addition, the underlying carbon data, along with additional 

data from the Agri-Food and Biosciences Institute (AFBI), was compared with the co-located ERSEM 

model predictions (Figure 1A). The data points used to derive the original statistical map are shown 

in Figure 1B. 

Table 4.1 Predictor variables used for benthic organic carbon prediction ranked in order of importance 

(see Diesing et al., 2017, for details).  

1.        % Mud content 

2.        Average bottom temperature 

3.        Distance to shoreline 

4.        Eastings 

5.       %Gravel content 

6.       Peak wave orbital velocity 

 

POLCOMS-ERSEM total sediment POC content (g C m-2) was calculated as the sum of slowly 

degradable carbon (ERSEM variable Q6c) and available refractory carbon (ERSEM variable Q7c) by 

taking the mean of monthly mean values for the period 2006-2009. Examination of the e-folding 

depths associated with the modelled exponential profiles for Q6c and Q7c were less than 4cm 

everywhere indicating that much of the model POC can be considered to be contained within the 

top 5cm of the bed and can be reasonably compared with the observed 5cm carbon stock values.  

The modelled buried refractory carbon (ERSEM nomenclature Q17c) was considered separately in 

the comparison as nominally it represents carbon below the ERSEM total sediment depth of 30cm. 

The overall conclusions are not affected by the inclusion of this pool. 

The AFBI data consists of benthic organic carbon measurements in the top 5cm of the bed at near 

annual frequency starting from 1999 and continuing to the present time at 6 locations off the 

Northern Irish coast (Figure 4.2A). The observations show large variability between samples with 

some suggestion of a trend to higher carbon content over time (Figure 4.2B). Original data was 

expressed as the carbon weight to weight of inorganic sediment. Contemporaneous measurements 

of porosity were not available. For comparison with the ERSEM model a crude conversion to g C m-2 

(5cm) was carried out using measured average sediment water content (by weight) and assumed 

water and sediment densities of 1025 and 2650 kg m-3, respectively. Because of the high sample 

variability, data were not averaged, and all samples were included in the scatter plot (Figure 4.3). 
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Figure 4.1. Sediment organic carbon observations: A) Diesing et al. (2017) and AFBI data (red dots) 

used to compare directly with ERSEM (Figure 4.2). B) Diesing et al. (2017) used to derive spatial map 

(Figures 4.3A) 

 

 

 

Figure 4.2: A) Locations for AFBI data. B) Time series plots of 5cm stocks. 

 

4.2.2 Depth of the oxygen horizon (oxygen penetration depth) 
The depth of the oxic layer in the seabed (oxygen penetration depth, OPD, ERSEM name “depth of 

oxygen horizon”) is often considered the region where breakdown of organic matter occurs most 
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rapidly. OPD depends on both the rate at which dissolved oxygen exchanges with the water column 

and the benthic oxygen consumption, a larger (deeper) OPD value generally indicating less benthic 

oxygen demand and/or faster exchange with the overlying oxygenated water. Observations suggest 

a sharp transition from deeper to shallow OPD once the percentage fine content (mud + silt) exceeds 

around 10% (Parker et al., 2012; 2011). This is attributed to a change from advective pore water 

driven transport behaviour to diffusive transport controlled by the sediment permeability.  

In Parker et al. 2011; 2012, a simple form of parametric bootstrapping (Manly, 1998) was used to 

derive a ‘broken stick’ profile to predict model oxygen penetration depths (OPD) based on the %silt 

content of sediments. 

𝑂𝑃𝐷 = exp (1.250 − 0.014𝑆𝐼𝐿𝑇)  for %silt ≤ 10.1 

𝑂𝑃𝐷 = exp (−0.0187)   for %silt > 10.1 

Combining this with the maps of the observed distribution of seabed silt content allowed a tentative 

spatial map of OPD to be derived.   

4.3 Validation outcomes 

4.3.1 Sediment organic carbon 
A scatter plot of observed sediment organic carbon content (Figure 4.3) against POLCOMS-ERSEM 

results (Q6c + Q7c) at the same locations showed model values typically a factor of 10 to 30 less than 

observed values (10-20 less if Q17c is included). No discernible trend or correlation is apparent 

between observed and modelled values nor with respect to distance from shore. 

 

Figure 4.3.  benthic organic carbon content in top 5cm (g m-2 ) scatter plot. X-axis observations used 

by Diesing et al. 2017 (see Figure 1A) and also AFBI data (marked red) . Y-axis are POLCOMS-ERSEM 

2006-2009 mean at matched locations. Marker colour is scaled to the distance from the coast, as a 

possible explanatory variable, apart from AFBI data shown in red. 



35 
 

The disparity between modelled and measured benthic POC stocks has been noted previously (e.g. 

Aldridge et al., 2017). This is interpreted to be a consequence of the different particulate carbon 

fractions present in the seabed. Marine biogeochemical models such as ERSEM deal primarily with the 

relatively labile organic material remineralised over timescales of months, that are responsible for 

much of the short-term features of the benthic carbon cycle, including observed benthic CO2 fluxes 

and faunal biomass. The large pool of benthic carbon unaccounted for by the model is, by contrast, 

likely to be relatively refractory and less important for biological processes, although it may be 

important in terms of carbon sequestration.  

Spatial patterns of modelled benthic carbon stock were compared with the data-derived statistical 

maps. Given the large difference in magnitude indicated in Figure 4.3, both data-driven and modelled 

distributions were normalised to lie in the interval [0, 1] to more clearly show relative spatial patterns. 

Since both data sets contain some outliers, the 10th to 90th percentile was used to define the upper 

and lower bounds in the normalisation. The resulting maps of sediment POC content for the data-

driven maps (Figure 4.4, A) and POLCOMS-ERSEM (Figure 4.4, B) show markedly different patterns. 

The data-driven approach shows the strongest correlation with sediment type (especially mud 

content) followed by bottom temperature (Diesing et al., 2017; see also Wilson et al., 2018). This gives, 

for example, relatively higher predicted organic carbon content in the cooler, muddier northern North 

Sea sediments (Figure 4.1B) and at known localised mud patches in the Irish and Celtic seas. By 

contrast, the ERSEM model showed largest seabed organic carbon content in coastal zones and the 

southern North Sea and correlated to modelled water column productivity. This is consistent with the 

hypothesis that measured and the modelled carbon are representing different carbon pools.  
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Figure 4.4. Normalised benthic organic carbon. A) data-driven map (Diesing et al (2017), B) 

POLCOMS-ERSEM model, 2006 to 2009 mean, C) chlorophyll-a concentration, 2006 to 2009 mean 

averaged over the euphotic depth. 

In summary, we conclude that the available observational cannot be directly compared to the 

ERSEM-derived dataset. In addition, there is insufficient observational data to assess change over 

time. We conclude that there is not enough evidence to assign a confidence level, although the 

analysis presented here provides some information about where the model outputs may be more or 

less reliable. 

4.3.2 Depth of the oxygen horizon (oxygen penetration depth) 
The statistical correlation based map of OPD was compared (Figure 4.5) to the POLCOMS-ERSEM 

model data for oxygen horizon depth (ERSEM variable D1M). In general, model values show a 

shallower depth compared to the data derived distribution. To bring out spatial patterns, the values 

were normalised to the interval [0,1] based on 10th and 90th percentiles. The data driven distribution 

is determined by the %fines content, with a transition from shallow to deeper oxic layers when fine 

content < ~10%, so it essentially picks out the difference between muddy and sandy/gravely 

sediments, with thinner oxic zones muddy regions. This gives a different distribution compared to 

the ERSEM-derived dataset (Figure 4.6). Sediment type is not strongly distinguished in the ERSEM 

model and OPD here appears to be partly linked to water depth (see depth contour in Figure 4.6 B). 

For the model, it is hypothesised that the deeper oxic layer in the northern North Sea is due to less 

organic material reaching the bed in deeper water (possibly in conjunction with decreased microbial 

oxygen consumption with lower temperatures) leading to reduced benthic productivity and 

consequent oxygen demand. 

 

Figure 4.5. Oxygen penetration depth (cm) maps from, A) statistical correlation based on %silt 

content, B) POLCOMS-ERSEM model. 
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Figure 4.6. Normalised oxygen penetration depth maps from, A) statistical correlation based on 

sediment size, B) POLCOMS-ERSEM model. White lines are contours of 50m, 100m and 150m water 

depth. 

In summary, the ERSEM model lacks the distinction between muddy and sandy sediment processes, 

linked to permeability, that should enable better prediction of the oxygen penetration depth. The 

spatial variability derived from correlating observations with %fine content is not reflected by the 

model dataset and we therefore assign weak confidence to this variable.  There is insufficient data to 

assess trends over time.  
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5 Fish species (SS-DBEM model) 
 

5.1 Model description 

5.1.1 SS-DBEM in a nutshell 
The Size Spectra – Dynamic Bioclimate Envelope Model (SS-DBEM) is a state-of-the-art model that 

projects the impact of changes in the environment and human activity on the abundance, biomass, 

and distribution of modelled species, whilst considering their ecology and physiology. Therefore, the 

SS-DBEM can project fish distribution and trends in response to climate change. It is important to 

note that the model is the full species distribution not specific stocks. The model does not try to 

simulate the exact number of individuals of a given species, but rather the relative number of 

individuals compared to other areas and other times. As such, while model units are expressed as 

“Number of individuals”, they are not to be used to predict future stock; rather, trends in response 

to changes in climate and fishing management. 

SS-DBEM use the following environmental conditions data from climate model projections: 

• Primary production 

• Bottom temperature 

• Surface temperature 

• Sea water pH 

• Sea water Salinity 

• Oxygen concentration 

• Ocean currents 

These are necessary to account for habitat suitability (e.g. temperature, salinity and pH), defining 

the size spectrum and system carrying capacity (i.e. chlorophyll), dispersion (current), and impacts 

on metabolic rate (e.g. temperature). 



39 
 

5.1.2 Model initialisation 
The outputs from climate models are used to drive the SS-DBEM, which projects changes in fish 

species distribution and biomass while explicitly considering known mechanisms of population 

dynamics and dispersal (both larval and adult), as well as eco-physiological changes caused by 

changing ocean conditions (Cheung et al., 2011; Fernandes et al., 2013; Fernandes et al., 2020). The 

SS-DBEM is a combined mechanistic-statistical approach that has been applied to a large number of 

marine species globally and is one of the models participating in the Fisheries Model Inter-

comparison Program (FISHMIP; Tittensor et al., 2018; Lotze et al., 2019).  

Initial distributions of selected species in the SS-DBEM are first estimated using the Sea Around Us 

database method (Close et al., 2006). Using data primarily derived from FishBase (www.fishbase.org) 

and SeaLifeBase (www.seaaroundus.org), it determines distribution based on (see Close et al., 2006 

for more details on the method):  

a) presence 

b) latitudinal range 

c) range limiting polygons 

d) depth range 

e) habitat preference  

f) the effect of “equatorial submergence”  

Then, the suitability of each species to different environmental conditions (e.g. temperature, salinity, 

oxygen concentration, bathymetry) is defined using its model-inferred environmental preference 

profile (see Cheung et al., 2008a; 2009 for more details), which create seed populations. The model 

is initialized with these seed populations using the estimated present distribution and then driven by 

ocean model outputs to evaluate the impact of recent (Queirós et al., 2018) or future (Fernandes et 

al., 2016) changes in environmental conditions on fish populations distribution. Combining ocean 

dynamics (e.g. advection) with mortality, growth, and dispersal processes, the model projects future 

patterns in distribution and biomass (see Cheung et al., 2008, 2009, for more details) with the 

carrying capacity of each species being dependent on the environmental conditions and limited by 

primary production. The Size Spectra component of the SS-DBEM accounts for resource by 

comparing the biomass that can be supported in any given area (based on primary production and 

the derived size spectrum) to the energy demand of the species that are predicted to be present in 

the area. Energy is distributed to species in proportion to their energy demand and their growth rate 

(see Fernandes et al., 2013 for details). Because the model accounts for both environmental 

preference and population dynamics, any changes in environmental conditions will result in changes 

in life history (e.g. growth, migration), carrying capacity, and, consequently in the abundance and 

distribution of species. 

The SS-DBEM fisheries model was initiated with seed populations for each species in 1990 and run 

until 2099. As mentioned, the model calculated biomass of fish each year after migration, 

reproduction and death (both natural and through fishing) were taken into account. Trial 

experiments in our study showed that the model reaches a stable state in under 10 years when run 

with constant conditions. We therefore treated the first 10 years of a model run as spin-up and only 

report changes between 2000 and 2099. The model was run on a global configuration, where all of 

the world’s oceans are represented, to overcome any boundary condition issues. It is worth noting 

that the model is capable to run 100s of species globally (see Cheung et al., 2019) and as such does 

not need specific parameterization for this regional application with the species selected and the 

forcing being the only change.  

http://www.fishbase.org/
http://www.seaaroundus.org/
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5.1.3 Assumptions of the model 
The Dynamic Bioclimate Envelop Model modelling approach has a number of inherent assumptions 

and uncertainties that may affect the performance of the model (RD.3). Firstly, the model is based 

on the assumption that the current predicted species distributions depict the environmental 

preferences of the species and are in equilibrium. Secondly, the underlying biological hypothesis, 

represented by the model structure and input parameters, may be uncertain. Moreover, the models 

did not consider the potential for phenotypic and evolutionary adaptations of the species. 

Theoretical and empirical data were used to model trophic interactions. The modelling approach 

does not incorporate the full range or complexity of interactions among species, but avoids the 

difficulties of formalising transient and complex species-specific predatory interactions at large-

scales. It also requires no assumptions about the extent to which species-specific trophic 

interactions that are currently observed will persist in the future. Furthermore, at the system level, 

size-based processes account for much of the variation in prey choice and trophic structure. 

 

5.1.4 Limitations of the model outputs 

5.1.4.1 Data used to drive the model 

The simulations used in MSPACE were run using inputs from three marine hydrodynamic-

biogeochemical models: the POLCOM-ERSEM, NEMO-ERSEM and GFDL models.  

The POLCOMS-ERSEM, NEMO-ERSEM, and GFDL models were each driven by one Coupled Model 

Inter-comparison Project Phase 5 (CMIP5) global climate model (GCM) projections with downscaled 

atmospheric data from a regional climate model (RCM), the Swedish Meteorological and 

Hydrological Institute (SMHI) Rossby Centre Regional Atmospheric Model (RCA4). Using only one of 

the many possible combinations of GCM-RCM pairs leads to an incomplete estimate of the true 

uncertainty in the outcome in a changing climate by, most likely, indicating a smaller spread of 

outcomes than if the estimate were based on a larger ensemble of such GCM-RCM combinations. 

This does not necessarily mean a reduction in the true uncertainty, but simply an incomplete 

estimate of it. See section 3.2.4 for more information on the data used to drive the model. 

POLCOMS-ERSEM and NEMO-ERSEM have a different model for the physics (POLCOMS and NEMO), 

but the same model for the biology and biogeochemistry (ERSEM). So while some different 

behaviour is expected in the physics the response of the primary production to it will be the same so 

there are similarities between those two. The GFDL model is entirely different and is expected to 

stand out from the rest. This means that in case where we have projections for the GFDL and one or 

both of the models with ERSEM there will be a divergence between them. 

5.1.4.2 Interpretation of model outputs 

Whilst the model units are expressed as “Number of individuals”, they are not to be used to predict 

actual future stocks but rather numbers relative to the initial starting values of the model. This is 

because the model was not initialised with actual fish numbers and subsequently the significance of 

this dataset is to show temporal and geographical trends, relative to other years and other grid 

points, in response to changes in the climate and the applied Maximum Sustainable Yield (MSY, see 

section 5.2.2). Another limitation comes from the MSY itself, the amount of pressure and fishing will 

vary according to the abundance of the individual fish species but the MSY will be constant, meaning 

that fishing will happen as long as there are fish to be fished in the model. Also, the same MSY is 

applied to all species which is not realistic when it comes to management of the fisheries since the 

quota and ensuing fish pressure are re-evaluated on a regular basis. But it does provide an 
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opportunity to see what the impact of fishing is on top of that of the climate change. Consequently, 

we are only looking for trends in abundance and changes in distribution rather than absolute values 

of fish whether it be in the present (validation period) or the future. 

 

5.2 SS-DBEM methodology 

5.2.1 Target species 
Species of fish used in validation were selected on the following basis: 

1. Availability of pre-existing model output for this species 

2. Species is present in UK waters and contribute a significant amount to landings by value 

3. Used in the Marine Spatial Planning analysis 

Consequently, we carried on the exercise for the species listed in Table 5.1, note that some of the 

species were present in all models and others were only in one. The goal is not to compare the SS-

DBEM response to the different biogeochemical models used to provide the environmental data but 

whether it matters and the impact it can have on the confidence in the model output for the larger 

analysis. 

Table 5.1: list of species that were validated and model that provided the output 

Fish species POLCOMS ERSEM NEMO ERSEM GFDL 

Clupea harengus x x X 

Merluccius merluccius x X  

Micromesistius 
poutassou 

x x X 

Dicentrarchus labrax x X  

Gadus morhua x x X 

Scomber scombrus x x X 

Salmo salar x X  

Malotus villesus   X 

Solea solea x x X 

Pleuronectes platessus x x x 

Pollachius virens x x X 

Scophthalmus 
maximus 

x X  

Sardina pilchardus x X  

Sprattus sprattus x x X 

Trachurus trachurus x x X 

Hipoglossus 
hipoglossus 

x X  

Melanogrammus 
aeglefinus 

  X 

 

5.2.2 Scenarios 
When talking of scenarios for the model we consider two things: i) the climate forcing (that is the 

Representative Concentration Pathway, RCP) that is being implemented in the biogeochemical 

model; and ii), the fishing intensity applied in the SS-DBEM as represented by the MSY. 
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Fishing scenarios are defined relative to each species’ maximum sustainable yield (MSY). Here, MSY 

is the highest average theoretical equilibrium catch that can be taken continuously from a stock 

under average environmental conditions (Hilborn and Walters, 1992). Assuming a simple logistic 

population growth function and under equilibrium conditions, MSY is calculated as:  

MSY = (B*intR)/4 

where intR is the intrinsic rate of population increase and B is the biomass at a species’ carrying 

capacity (Schaefer, 1954; Sparre and Venema, 1998). In this model, the intR for each species is 

calculated based on natural mortality (Pauly, 1980; Cheung et al., 2008b). Note that MSY is linked to 

the fishing mortality rather than the biomass. 

The combination of RCP and MSY created a number of scenarios (table 5.2) that are similar to hared 

socio-economic pathway scenarios (SSPs) and provide information on both the impact of climate 

change and that of human activity (fisheries). 

Table 5.2: Model scenario in MSPACE 

Model RCP MSY 

POLCOMS-ERSEM 4.5 0, 0.6 

 8.5 0, 0.8, 1.1 

NEMO-ERSEM 4.5 0.6 

 8.5 0.8, 1.1 

GFDL 2.6 0 

 8.5 0 

 

5.2.3 Model spatial and temporal scale 
The model outputs are on a 0.5 by 0.5 degree grid meaning it is composed of cells that are roughly 

30 by 50 kilometres. The spatial domain covered by the SS-DBEM outputs is determined by the 

spatial domain of the biogeochemical model used to provide the environmental variables, since they 

all cover the full UK waters, this is not an area of concern. The model outputs are expressed as an 

annual value that represent the potential abundance of fish within each grid cell of the model 

A previous validation exercise (Fernandes et al., 2020) showed that the model could reproduce 

trends in survey data for the period 1970-2000. For the biogeochemical models that provide the 

environmental variables to the SS-DBEM this corresponds to the historical period, that is the 

atmospheric CO2 forcing is provided by data rather than by atmospheric model. Here we will focus 

on the years 2000 to 2020, this means that atmospheric forcings for this time period are provided by 

atmospheric model and while there will be little variation between different climate scenario, some 

divergence might happen. 

 

5.3 Validation methodology 

5.3.1 Model and survey data availability 

• Survey data: Lynam et al, Cefas (2022). A data product derived from Northeast Atlantic 

groundfish data from scientific trawl surveys 1983-2020. Cefas, UK. V1. doi: 

https://doi.org/10.14466/CefasDataHub.126  

• SS-DBEM projections using POLCOMS-ERSEM and NEMO-ERSEM model outputs: Sailley, S., 

Kay, S., Clark, J.R., Calton, B., (2020): Fish abundance and catch data for the Northwest 
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European Shelf and Mediterranean Sea from 2006 to 2098 derived from climate projections. 

Copernicus Climate Change Service (C3S) Climate Data Store (CDS). 10.24381/cds.39c97304 

• SS-DBEM projections using GFDL model outputs (Fernandes et al., 2013, 2020) 

5.3.2 Data handling 
Survey data location was matched to the SS-DBEM grid by using a nearest neighbour approach to 

ensure geographical match when selecting a specific domain for the analysis. Domains of choice 

were the UK EEZ and each national marine plan areas (Figure 5.1). The data were aggregated over 

the whole areas, with no distinction between inshore and offshore areas as the model resolution did 

not allow for this. 

From there, survey data and model output were filtered for a specific area and aggregated 

temporally or spatially depending on the end goal of that validation. Next, data were normalised so 

they vary between 0 and 1. This is done to ensure we compare variability and trends which are the 

important information in the analysis rather than actual number of fish in either survey or model. 

Once normalised the model outputs are compared to each other in a number of ways: 

1. Temporal match: 

a. Trend: do the trends in model outputs match those in the survey on a year to year 

basis 

b. Difference: what is the difference between survey and model output? Does the 

model overestimate or underestimate on an annual basis? 

c. Mean difference: the mean value of the difference to estimate how much the model 

divert from the data on a decadal basis. 

2. Spatial match: does the model capture the spatial variability inherent in the marine 

ecosystem. 

3. Do scenario matter? Throughout we’re comparing different scenario as well as different 

forcing model used to provide the environmental data needed by the model. This will inform 

how much is behaviour inherent to the model and how much indicate response to the 

forcing. 

Note that for a few species we had enough data to generate a trend at the UK EEZ scale but not at 

the National Marine Plan scale, while there might be survey data if not enough sites are repeated 

every year or are just one offs. Causing data sparsity once we move to a smaller spatial domain. 
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Spatial distribution could still be plotted in these cases, as we average over time, though it also 

shows that in same case the highest survey density is outside of the UK EEZ. 

 

Figure 5.1: Map of the 4 National marine plan area (placeholder figure) 

5.4 Validation outcome 

5.4.1 Temporal scale 

5.4.1.1 Trends  

Overall, we found good agreement between the model scenarios (Figure 5.2). This means that for 

the present time period, when the climate signal is weak, there is little impact of the scenario used. 

Divergence is due to the different fishing pressure applied or the use of a significantly different 

biogeochemical model to provide the environmental variables. There appears to be little agreement 

between the survey data and the model trends, though for the second half of the time period 

considered there seems to be more agreement between the model and observations. It is important 

to note that the survey data were not filtered for specific survey quarters or size of individual, the 

model is likely better equipped to capture trends in larger adult individual than the juveniles or 

smaller individuals, plus it provides a value for the year as a whole rather than a specific timing that 

can be match with survey timing. So some mismatch between survey data and model output are to 

be expected. 

For most fish species it looks like the trend is slightly off for the first few years, which could be due to 

the model coming out of what is known as the spin-up period (1980-2000). That is the model was 

still being initialised and the projected trend might be a bit off. For the second half of the period, we 

see that trends start to match, though with a delay of a few years. There is a spread within the 

models trends in response to both the model used to provide environmental variables and the 

scenarios used (climate and fishing combination). Overall, there is minimum spread between the 

model reflecting that the climate scenarios have not yet heavily diverged and small effects of either 

climate or fishing pressure are driving the variations.   

UK EEZ England Scotland Wales N. Ireland 
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Figure 5.2: Temporal trends at the UK EEZ and national scales. Black line reflects the trend in the observations while the 
various colours correspond to the biogeochemical model used and the various scenarios. 
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5.4.1.2 Model to survey data temporal trend difference 

Subtracting the data from the model shows us how far the model is from the observation as well as 

whether it tends to overestimate or underestimate the trend (Figure 5.3). Optimally we’d want all 

results from this to be as close to zero as possible. The difference in trend confirms what we found 

earlier in that in the early 2000s all models are overestimating the biomass compared to the survey 

data on a year-to-year basis. This overestimate gets reduced for most species, though in some cases 

it becomes an apparent underestimate this is likely from the delay between model and data that we 

mentioned earlier. 

Except for some instances, all models are quite close to each other with the error and the range is 

within +/-0.5 indicating that the difference between model and data is not overwhelming. 
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Figure 5.3: Temporal trends of the difference between the model and observation, at the UK EEZ and 

national scales. The various colours correspond to the biogeochemical model used and the various 

scenarios 

4 

5.4.1.3 5Mean difference in temporal trends 

This is a different way to look at the difference between model and data (Figure 5.4). Where the 

difference might feel overwhelming when looking at it as a trend, when it is reduced to a single value 

the mismatch is at the 10 year time period instead and reflects the capacity of the model to capture 

things at a broader time scale rather than on year to year basis. Unsurprisingly, we have a mean 

difference that’s under 0.5 at the most and in some cases even under 0.25 with it being biased 

toward an overestimation by the model. It also highlights how for some fish species which model 

and/or scenario is being used might affect the outcome as we can better see the divergence 

between the models. 
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Figure 5.4: Mean difference in the temporal trend between data and model. UK EEZ and national areas.. 

 

Spatial variability 

For the spatial variability it was important to match the data points between survey and model 

outputs to ensure we were comparing a similar geographical spread. As it is at the UK EEZ scale 

there are areas where there is a lack of data. This is even more critical for the Wales and Northern 

Ireland National Marine Plan which are smaller than the England and Scotland ones. Plotting all 

occurrence of sampling against model data (with the model data limited to the UK EEZ) shows that 

there are some gaps, additionally, not all locations are sampled every year meaning that there are 

actually much less data on the spatial scale (Figure 5.5, left column for density distribution of survey 

data).  

Consequently, the standard deviation and mean value in the data, even when creating a time 

average of the data, is much less than that of the outputs. This is true for all fish and limits the 

validation that can be done spatially, without presenting a result biased against the model output. 

As such we need to visually evaluate whether the model and data present some similar patterns for 

high abundance areas. To this end we mapped the abundance found in the survey and model. While 

we limited the model data to the UK EEZ, the full dataset from the survey was used. There isn’t a lot 

of high abundance “hot spots” appearing in the data (Figure 5.5, middle column) compared to the 

distribution patterns that are visible in the model (Figure 5.5, right column). However, the areas that 

are most sampled during the surveys (dark red in the maps in the left column) do correspond to the 

high abundance areas in the model (green to yellow dots). It makes sense that the sampling would 

happen mostly where the fish species of interest can be found, indicating that the model captures 

the distribution of fish species decently well. 

 

Density distribution of survey Fish distribution - survey Fish distribution - model 
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Mallotus villesus 
No data 
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Figure 5.5: Evaluation of the model spatial variation to that found in the data. Left column: density distribution of survey 
data indicating where they are mostly collected. Middle column and right column: sum of abundance of fish per data point 
expressed as both size and colour of the dots for survey data and model outputs respectively. Survey data are mapped for 
all data point while the model data are restricted to the UK EEZ. 

5.4.2 Short summary 
While the capture of the temporal trend was not without fault with an overestimate from the model 

it was mostly on a year to year basis with the trend over 10+ years being more accurate and reliable. 

The accuracy of the trend varies between fish species, but overall the model is doing a good job of 

representing trends in fish. The spatial distribution is more difficult to evaluate because of the 

sparsity of the data, however there is a match between areas where the model predicts high 

abundance and those where sampling is most often conducted with the distribution of the data 

making it to properly see any pattern. 

5.5 Expert judgement: confidence in model output 
The goal of this section is to provide an evaluation of the model outputs that are used in the meta-

analysis for Marine Spatial Planning. While the model cannot provide exact abundance of fish on a 

year-to-year basis, it is important to see if it can capture trends and variability on the 20 years time 

scale that we are interested in for long term planning. This focus comes from the fact the meta-

analysis is comparing present state against future state. So, while the model might not capture the 
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actual trend and diverge from the survey data on a yearly basis (section 4.1 and 4.2), it might be 

efficient at capturing the 10 to 20 years signal which are shown through the evaluation of the 

temporal trend and the spatial distribution.  

Additionally, the difference between the model and the observation can be due to bias in either. 

However, we consider that the bias is consistent (data are corrected for sampling variability in 

method and location, the model behaviour is consistent and only responds to the change in 

environmental conditions rather than being erratic and random). As such we’re judging model 

robustness, which can be assessed through the several model scenario that were used in this 

validation. 

The confidence assessment is caried out for each variable independently, and for each of the areas 

that were used in this work, this is summarised in Table 5.3 below,  as well as in the summary of the 

confidence assessment (section 2). 

We are not scoring the model per se but providing an expert judgement on how confident we are in 

the model, that is whether we are highly confident, confident or less confident. To ensure a 

coherent judgement on all variables and so users can assess whether they think the scoring is 

adequate, “scores” are assigned to determine which category the model variable falls into. This is 

done as follow: 

1. Does the model match the data temporal trend or reproduce any pattern that can be found 

in the data? This is a visual assessment to see if the model at any point match the pattern of 

the data in the trend plot and is weighted by how many of the models do reproduce the 

pattern 

2. Is the difference between model and data for the temporal trend substantial? This takes into 

account the difference between model and data trend as well as the mean difference. The 

more the model deviates from the data (overall and on average) the less confident we are in 

its capability to capture a long term trend. 

3. Is there any spatial match? Is the distribution of fish as presented by the data, matched by 

the model as well as spots of high density. 

Each points is given a “score” from 1 to 3, scores are totalled and divided by 3 for a final score that 

sits between 1 and 3 to give the final expert judgement as to whether confidence in the model is 

low, medium or high. In case where there is not enough data we consider this and score it as a 

“cannot say”. The UK EEZ and each national marine plan area are evaluated separately and the 

scoring of one fish may be very different between each based on data availability in that region to 

generate the temporal and spatial metrics (e.g. Pollachius virens data being concentrated in Scotland 

reflect positively on the scoring for Scotland national marine plan area and the UK EEZ, but not 

England national marine plan area, and there is not enough data to assess it for the Wales and 

Northern Ireland national marine plan). 

 

Table 5.3: Expert Judgement scoring of the fish model outputs for each individual fish species. With darker colours 
indicating higher level of confidence, and grey indicating a lack of data to complete the scoring. 

Species of interest UK EEZ England Scotland Wales 
N. 
Ireland 

Clupea harengus      

Dicentrarchus labrax      
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Gadus morhua      

Hippoglossus hippoglossus      

Mallotus villeus      

Melanogrammus aeglefinus      

Merluccius merluccius      

Micromesistius poutassou      

Pleuronectus platessa      

Pollachius virens      

Salmo salar      

Sardina pilchardus      

Scomber scombrus      

Scophtalmus maximus      

Solea solea      

Sprattus sprattus      

Trachurus trachurus      

 

 

5.6 References for section 5 
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6 Brown crab (Cancer pagarus); DEB model 
 

6.1 Model description 
DEB model parameters for Cancer pagurus were taken from the Add-my-Pet database (Kooijman, 

2017), which contains DEB parameters for >1000 species. The goodness of fit between observed 

data and DEB model predictions is quantified using mean relative error (MRE) and symmetric mean 

squared error (SMSE), with values closer to zero indicating a better match between data and 

predictions. MRE is 0.098 and SMSE is 0.02 for predictions made using these parameters (Kooijman, 

2017). The temperature dependence of physiological rates is accounted for in the DEB model by the 

Arrhenius temperature, which is calculated from the observed values of physiological rates such as 

metabolic or growth rate at various temperatures. There was no specific evaluation of the 

https://doi.org/10.1111/gcb.12231
https://doi.org/10.1111/j.1467-2979.2008.00315.x
https://doi.org/10.1111/gcb.15081
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robustness of this Arrhenius temperature provided with the parameter set used in this model. Full 

details of the parameters used, and the data used to validate predictions, are available from the 

Add-my-Pet species list. 

The DEB model used in these analyses was forced using POLCOMS-ERSEM projections, described in 

section 3, for bottom layer temperature and depth integrated NPP (as a proxy for food availability), . 

The model made predictions for three physiological endpoints – ultimate size MC (measured as 

carbon mass, g), age-at-maturity AAM (days) and cumulative allocation to reproduction over 

the whole of the modelled time period MR (gC). As any increase in temperature will lead to 

an increase in metabolic rates, it was assumed that MR (allocation to reproduction 

integrated over a fixed time period) would likely increase in the future due to predicted 

ocean warming. However, increased metabolism will also lead to increased natural (and 

possibly predation) mortality, which may negate any temperature driven gains in MR. While 

survival is not explicitly modelled, future estimates of MR were temperature corrected to try 

and account for this. DEB models use a temperature correction factor (TC) to describe the 

temperature dependency of physiological rates. For each POLCOMS-ERSEM model grid cell a 

“metabolic speedup factor” was calculated (TCfuture/TCpresent). Future predictions of MR were 

divided by this factor. The model does not directly predict C. pagurus presence/absence or 

population dynamics – it evaluates an individual’s potential to grow and allocate energy to 

maturation and reproduction over the whole model domain. However, population level 

inferences can be made using the reproductive endpoints AAM and MR. The possible 

distribution of C. pagurus populations in each time period was estimated by allocating the 

values of each of these endpoints in each model grid cell a “viability score”. These scores 

were based on the notion that individual fitness is determined by the amount of carbon an 

individual invests in reproduction over its lifetime. Areas in which animals mature early and 

are able to invest heavily in reproduction therefore produce individuals with the greatest 

fitness, and so have the highest viability scores. Individual scores were summed and 

normalised to give an overall viability score for each grid cell between 0 and 1, with 0 

indicating that the area would be unlikely to support a population, and 1 indicating an area 

would be very likely to support a population. 

6.2 Validation methodology 
A formal evaluation of the distributions predicted by the C. pagurus model used in this analysis was 

not conducted. The model outputs were assessed by visual comparison of the viability scores (Figure 

6.1a) to the probability of occurrence data projected by Aquamaps (Figure 6.1b) and recorded 

occurrence data provided by NBN Atlas (Figure 6.1c). 

6.3 Validation outcomes 
The spatial patterns of distribution projected by the DEB model are broadly correct around most of 

the UK. The only exception appears to be in the deeper parts of the Western English Channel where 

the DEB model projects high viability scores (Figure 6.1a). This is not in keeping with the projected 

probability of occurrence (Figure 6.1b) or the recorded occurrence data (Figure 6.1c) for this area. 

Despite this however, we can be confident in the spatial component of the DEB outputs used in the 

spatial meta-analysis because of the good agreement elsewhere.  
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Fig. 6.1: a) Projected present day (2022) distribution of Cancer pagurus based on viability scores 

derived from DEB model endpoints; b) projected present day probability of occurrence of Cancer 

pagurus, downloaded from Aquamaps; c) confirmed occurrences of Cancer pagurus between 1948 

and 2022, downloaded from the National Biodiversity Atlas. 

 

In order to establish whether the temporal trend in distributions was robust, DEB model projections 

for 2050 (Figure 6.2a) under RCP8.5 were visually compared to the RCP8.5 2050 native range map 

generated by Aquamaps (Figure 6.2b). DEB model projections show a small decrease in viability 

scores across most of the UK EEZ, with the exception of the northern North Sea, where scores 

increase slightly in comparison to present day projections. These apparent changes in habitat 

suitability do not appear to be replicated in the Aquamaps projections for 2050, however the spatial 

patterns of distribution are comparable between the two model outputs, despite the small 

differences. Therefore, we can be moderately confident that the trend of the projections from the 

DEB model are robust. 
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Fig. 6.2: a) Projected future (2050) distribution of Cancer pagurus based on viability scores derived 

from DEB model endpoints; b) projected 2050 probability of occurrence of Cancer pagurus, 

downloaded from Aquamaps 

6.4 References for section 6 
Add my Pet (AmP) species list: 

https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Cancer_pagurus/Cancer_pagurus

_res.html 

AquaMaps, Nov. 2022. Computer generated distribution maps for Cancer pagurus (edible crab), with 

modelled year 2050 native range map based on IPCC RCP8.5 emissions scenario. Retrieved from 

https://www.aquamaps.org.  

Kooijman, 2017. AmP Cancer pagurus, version 2017/08/25.  

National Biodiversity Atlas (NBN) Atlas Cancer pagurus occurrence download at 

https://spatial.nbnatlas.org/?fq=(lsid:NBNSYS0000174336%20AND%20occurrence_status:present). 

Accessed 21 November 2022. 

 

7 Seaweed (sugar kelp, Saccharina latissima); DEB model by Broch 

et al., 2012 
 

7.1 Model description 
Future S. latissima (sugar kelp) aquaculture production was projected using the Dynamic Energy 

Budget (DEB) model from Broch et al. (2012). The DEB uses temperature, nitrate concentration and 

photosynthetically active radiation to represent the seasonal growth of kelp frond. Aquaculture 

production was simulated following the approach of Broch et al. (2019). Using their initial “seed” 

conditions, we grew kelp from September to June in each annual season from 2000-2099. For each 

season we recorded the maximum size of the kelp to estimate how annual production could be 

impacted by climate change. Driving conditions were taken from POLCOMS-ERSEM projections for 

RCP 4.5 and 8.5, as described in section 3. Photosynthetically Active Radiation (PAR) reaching kelp 

https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Cancer_pagurus/Cancer_pagurus_res.html
https://www.bio.vu.nl/thb/deb/deblab/add_my_pet/entries_web/Cancer_pagurus/Cancer_pagurus_res.html
https://www.aquamaps.org/
https://spatial.nbnatlas.org/?fq=(lsid:NBNSYS0000174336%20AND%20occurrence_status:present


60 
 

was estimated using sea-surface PAR and light attenuation (KD490) from version 4.3 of the Ocean 

Colour Climate Change Initiative (https://www.oceancolour.org/) product. 

7.2 Validation methodology 
Confidence was assessed on the basis of previously published validation of the model.  

7.3 Validation outcomes 
The model has previously been validated at regional scales in Broch et al. (2012, 2019) and Jiang et 

al. (2022). The DEB model has been shown to be able to reproduce the seasonal cycle of sugar kelp 

growth (Broch et al. 2012, Jian et al. 2022). At present due to the lack of long-term data no studies 

have evaluated whether the model is ability to reproduce inter-annual variation in sugar kelp 

growth. However, the optimum temperatures for growth and photosynthesis are reasonably well 

constrained (Bolton and Luning 1982). We therefore have moderate to high confidence in the 

response of kelp to changing temperatures.  Given the strong confidence in the POLCOMS-ERSEM 

surface temperature and moderate to weak confidence in the bottom-level temperature, we assess 

confidence in the seaweed dataset as moderate overall.  
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