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KEY FACTS 

What is already happening 
 

● Extreme water levels have become more frequent in the past 150 
years, driven primarily by mean sea level rise.  

● Mean sea level rise, along with coastal squeeze, changes in sediment 
supply, variations to ocean chemistry and pollution are contributing 
to a decline in the extent of saltmarshes and sand dunes, which act as 
a natural buffer to flooding. 

● Exposure to flooding and vulnerability of ecosystems are being 
exacerbated by population growth, changes in land use and 
increasing asset values in the floodplains.  
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● Increased flood risk has largely been contained through improved 
flood defences, flood forecasting and emergency response. However, 
losses from major events that exceed design standards are growing 
in frequency.  

● Preliminary results from ongoing research on compounded effects of 
flooding suggest that risk of flooding is significantly underestimated 
under today’s climate and into the future.    

 
What could happen in the future 

● Extreme water levels are certain to increase during the 21st century 
and beyond, principally driven by accelerating mean sea level rise.  

● Continued loss of natural habitat buffers will dramatically increase 
flood-defence capital and maintenance costs.  

● By the 2080s, at current adaption levels, the cost of estimated annual 
coastal flood damages is likely to increase two-to three-fold from 
£360 million today, depending on temperature rise and population 
growth.  

● 1,600 km of major roads, 650 km of railway, 92 railway stations and 
55 historical landfill sites are likely to be at risk of coastal flooding 
or erosion by the end of the century.  

● Socially vulnerable communities at the coast are disproportionally at 
risk, and this will increase more rapidly than for other communities, 
enhancing inequalities.  

● For some coastal locations it will unfortunately no longer be 
technically or economically feasible to provide protection from 
flooding and coastal change. Initiatives such as the Coastal 
Transition Accelerator Programme are ongoing to explore, enable 
and accelerate the transition needed for coastal areas that cannot 
sustainably be defended in the long term.     

 
SUPPORTING EVIDENCE 
 
Introduction 
Coastal floods are amongst the most dangerous natural hazards globally. 
This also applies to the UK where flooding is one of the highest priority 
risks for civil emergency (Cabinet Office, 2015) and to Ireland, where 
coastal flooding was identified as the top sectoral priority for marine climate 
services (Fitzhenry and Nolan, 2023). Recent floods (e.g. winters of 
2013/14, 2019/20 and 2022/23) have demonstrated the ever-present threat of 
serious flood impacts in coastal regions, despite improved flood-protection 
measures and technology that has provided tools to forecast and mitigate 
risks. While flood-defence standards in the UK and Ireland are among the 
highest in the world, significant populations and assets in the coastal flood 



Coastal Flooding  

3 
 

plain are threatened in the event of defence failure during events exceeding 
the standard of protection (e.g. major overtopping or a breach). Annual 
average economic damages from coastal flooding in the UK are around 
£540 million currently (Sayers et al., 2015). Furthermore, coastal flooding is 
a growing threat due to accelerating mean sea level rise and possible 
changes in tides and storminess associated with climate change (Palmer et 
al., 2018; Fox-Kemper et al., 2021). There is also a continued decline in 
natural habitats that act as natural coastal protection, such as saltmarshes 
and sandy shorelines (e.g., Masselink et al., 2016, 2022; Burden et al., 
2020). Impacts of coastal flooding are projected to increase in the future 
with population growth, urbanisation, continued development in low-lying 
coastal areas (Stevens et al., 2016) and habitat degradation (Bednar-Friedl et 
al., 2022). 
 
Throughout history, many severe flooding events have affected the UK and 
Irish coast (Haigh et al., 2015; 2017). In 1607, a major coastal flood on the 
west coast of the UK caused the greatest loss of life from any sudden-onset 
natural catastrophe in the last 500 years, resulting in the deaths of around 
2000 people (Horsburgh and Horritt, 2006). The ‘Big Flood’ of 31 January–
1 February 1953, killed up to 300 people in eastern England and 30 people 
in Scotland, 24,000 people had to evacuate their homes and damage cost 
£1.2 billion, at 2014 values (McRobie et al., 2005). In 2002, significant 
coastal flooding occurred in the Dublin region causing damage of 60 mEUR 
(Dublin City Council, 2021) and triggering a revision of Dublin’s coastal 
flooding defences. During the winter of 2013/14, the UK and Ireland 
experienced an unusual sequence of extreme storms and some of the most 
significant coastal floods in the last 60 years (Thorne, 2014; Spencer et al., 
2015).  
 
The multiple drivers of coastal flood risk can be considered using the 
conceptual Source−Pathway−Receptor−Consequence (SPRC) model 
(Figure 1) (Sayers et al., 2002). The ‘source’ describes the origin of a 
hazard, which in the case of coastal floods, is extreme total water levels 
(Moritz et al., 2017). The ‘pathway’ is the route that a hazard takes to reach 
the ‘receptors’, the processes mediating the magnitude of the hazard along 
that route and the characteristics of the coastline that influence the hazard. 
For coastal flooding it reflects how seawater makes its way onto normally 
dry land. The ‘receptor’ is the entity (e.g. people, property, environment) 
that may be harmed by the hazard (e.g. seawater inundation and/or wave 
impact). ‘Consequences’ entail the social, economic and environmental 
effects of the coastal flooding on the receptors, the calculation of which are 
extremely sensitive to small changes in the source conditions (Lyddon et al., 
2020) and to changes in the pathways (Nicholls et al., 2015; Pollard et al., 
2019).  
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This MCCIP report card is structured around the SPRC framework and 
updates the previous report cards on coastal flooding in 2013 (Donovan et 
al., 2013), 2017 (Haigh and Nicholls, 2017) 2020 (Haigh et al., 2020a) and 
2022 (Haigh et al., 2022). We describe what is already happening and what 
could happen in the future using the SPRC components; we show how 
change can increase flood risk, and equally how management can reduce 
flood risk. We then state what qualitative level of confidence we can place 
in the science for ‘what is already happening’ and ‘what could happen in the 
future’. Finally, we briefly highlight key challenges and emerging issues. 
 
 

 
Figure 1: Source-Pathway-Receptor-Consequence (SPRC) conceptual model. 

 
 
What is already happening? 
 
Source: Coastal floods are driven by extreme total water levels, which arise 
as combinations of: (1) relative mean sea level; (2) tides and their low 
frequency anomalies; (3) storm surges; and (4) waves, especially setup (i.e., 
the average water level increase due to breaking waves) and runup (i.e., the 
maximum vertical extent of wave uprush on a beach or structure). These 
factors experience topographic amplification near the coast and there are 
non-linear interactions between the four components. The additional 
influence of rainfall and fluvial input may also be significant in some 
estuaries dependent on size, river regime and transmission time (Svensson 
and Jones, 2002; Hawkes, 2005; Hendry et al., 2019; Robins and Lewis, 
2019; Harrison et al., 2021), showing the importance of considering 
flooding from both marine and fluvial/pluvial sources in some areas. These 
four components exhibit considerable natural seasonal and year-to-year 
variability. While the tidal component is deterministic, with predictable 
modulations on fortnightly, monthly, seasonal, 4.4-year and 18.6-year 
timescales (Haigh et al., 2011), the variability in the wave, storm surge and 
mean sea level components is stochastic and linked to regional climate 
cycles, such as the North Atlantic Oscillation (Hurrell, 1995). The seasonal 
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and year-to-year variability in each component influences the potential 
frequency and magnitude of flooding (Wadey et al., 2014). Longer-term 
changes in any, or all, of the components can lead to variations in the 
frequency and magnitude of extreme sea levels. For the North Sea, 
Horsburgh et al. (2021) assessed “grey swan” extreme water level events 
(i.e., an event which is expected on the grounds of natural variability but is 
not within the observational record) and showed that over the next few 
decades, the natural variability of mid-latitude storm systems is likely to be 
a more important driver of coastal extreme sea levels than either mean sea 
level rise or climatically induced changes to storminess. 

Extreme water levels are affected by changes in relative mean sea level both 
directly (e.g. with mean sea level rise, a lower storm surge elevation at high 
tide is necessary to produce a sea level high enough to cause flooding), and 
indirectly (e.g. changes in mean sea level alter water depths and therefore 
modify the propagation and dissipation of the tide and storm surge 
components (Lyddon et al., 2018a), or alter wave processes in shallow water 
(e.g. refraction, Dornbusch, 2017), without any change in the frequency of 
occurrence of extreme events). In addition, extreme water levels may 
change with variations in the speed, tracks and strengths of weather systems, 
which alter the frequency, intensity, and/or duration, of waves and storm 
surges (Palmer et al., 2018; Wei et al., 2020) and variations in rainfall and 
river discharge in estuaries (Robins et al., 2021; Harrison et al., 2021). 
Finally, the relative importance and duration of influence of any of the four 
components is linked to the local tidal range and wave exposure, with some 
(e.g. mean sea level rise) having higher impacts in low-energy micro-tidal 
than in high-energy macro-tidal environments. 

Current trends in still water levels (i.e., the water surface elevations that 
exclude wave effects), and storms and waves, are detailed in report cards by 
Horsburgh et al. (2020) and Bricheno et al. (2025), respectively. In brief, 
there is overwhelming scientific consensus that observed increases in 
extreme still water levels around the UK, Ireland, and worldwide have been 
driven primarily by the rise in relative mean sea level (as illustrated for the 
UK’s longest high-frequency tidal gauge record – Newlyn in Cornwall, 
Figure 2). In Ireland, studies of extreme sea levels have been hampered by a 
lack of available data, meaning Irish extreme water levels are often not 
analysed as part of regional or global studies (e.g. Calafat and Marcos, 
2020). However, historical data recovery efforts have the potential to fill 
this gap (Murdy et al., 2015; McLoughlin et al., 2024). Mean sea levels 
around Ireland have increased in line with UK studies with vulnerabilities 
highlighted for the major cities of Cork and Dublin due to isostatic effects 
exacerbating relative sea level rise at a local level (Pugh et al., 2021; Shoari-
Nejad et al., 2022). As a result of mean sea level rise, extreme sea levels that 
previously had a long return period (>100 years) near the beginning of the 
20th century now have much lower (~10 year) return periods. There is little 
evidence for long-term systematic changes in storminess or storm surge 
magnitude over the last 100 years above natural variability (Marcos et al., 
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2015; Mawdsley and Haigh, 2016). However, there is some observational 
evidence for small changes in tidal range at select sites around the UK and 
elsewhere worldwide (Mawdsley et al., 2015). This has slightly increased or 
decreased extreme high water levels. The drivers of these changes remain 
unclear, although it is likely that they relate to changes in local bathymetry 
(mainly dredging for navigation) and/or climate related variations (Haigh et 
al., 2020b). Since the 1990s, storm tracks in the North Atlantic have shifted 
poleward and storm frequency has increased. Significant wave heights have 
decreased in northern UK waters and increased in southern waters, though 
high variability means observed trends cannot yet be definitively attributed 
to climate change (Bricheno et al. 2025). 

 

 
Figure 2: Trends in high water level percentiles at Newlyn, Cornwall (a) before; 
and (b) after, removing the influence of relative mean sea level rise. The magnitude 
of the trend is given in mm/yr with a standard error. Trends in the different high 
water level time−series are all statistically significant at 95% confidence (i.e. two 
standard errors), but after removing mean sea level none of the trends are 
statistically significant. This highlights that extreme water levels have increased at 
Newlyn and that the increase has primarily been driven by the rise in relative mean 
sea level. 

 

Pathway: In a natural environment, the position of the pathway moves 
landwards with mean sea level rise (e.g. Orford et al., 1995) although 
pathways have been maintained in many locations for well over a century 
and have by now experienced mean sea level rise of ~0.3 m over the last 
150 years (Hogarth et al., 2021). The nature of flood pathways varies around 
the coast and is primarily determined by natural features and their 
topography or engineered hard defences. Seawater can inundate normally 
dry land via several different pathways. First, by still water simply 
overflowing where the water height exceeds the elevation of the land or the 
barrier that normally separates them. Second, by overtopping of a natural 
(e.g. barrier beaches) or artificial (e.g. sea wall) barrier by waves (Brown et 
al., 2021). Third, by breaching and lowering of a natural or artificial barrier, 
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often as a consequence of prolonged overwashing (‘rollover’) or erosion at 
the front-face of the barrier allowing more water to flow landward. Fourth, 
by the process whereby the cross-shore profile does not retreat or progress 
as an equilibrium profile, but develops towards a steeper profile or coastal 
steepening, allowing bigger waves to reach the shoreline or toe of coastal 
defence structures (Talor et al., 2004). Fifth, the lowering of the foreshore 
platform (Sayers et al., 2022).  

Decline in natural features and deterioration in artificial ones over time 
impact flood pathways and can increase the flood hazard. In contrast, for 
example, artificial nourishment and stabilisation of beaches, replacement of 
beaches with hard defence (Dornbusch, 2019), building new or improving 
existing banks along estuaries, or providing more space for water through 
managed re-alignment can alter flood pathways and reduce flood risk 
(Huguet et al., 2018). Management interventions can increase flood risk if 
not appropriate for the site, and numerical modelling tools can be used to 
consider the site-specific impacts of new artificial features (Pontee, 2015). 
Larger scale changes in subtidal morphology like dredging (van Maren et al 
2015; Ralston et al., 2018) can influence both the source (tidal range) and 
also flood pathways (changes in sediment regime; Philips et al., 2017). 

Determining changes in historical, current and future flood pathways is 
more difficult than assessing variations in flood sources, due to the 
combined natural and human elements at play and the lack of appropriate 
long-term datasets in the relevant parameters (e.g. saltmarsh extents, 
alterations to shingle beaches, full history of flood defences, etc). However, 
innovative approaches are being developed to assess changes in flood 
pathways for more recent time periods, using, for example, social media 
(e.g., Brown et al., 2021) and novel measurement technologies (e.g., 
WireWall, which measures the speed and volume of overtopping; Figure 3), 
and holistic coastal morphological modelling for decision making 
(Environment Agency, 2019). It is increasingly recognized that natural 
systems, such as saltmarshes, shingle beaches and sand dunes, provide 
important buffering against floods (e.g., Masselink et al., 2016, 2022), and 
that their decline increases flood risk (Committee on Climate Change, 
2018). These systems are part of the natural pathways and influence them by 
reducing wave height in some locations in front of human-made defences or 
reduce the water volume in case of a breach by maintaining a higher sill 
level in the breach area (Thorenz et al., 2013). Coastal ecosystems can 
migrate landward or grow vertically in response to mean sea level rise, but 
their resilience will be compromised by ocean warming and other 
anthropogenic drivers, and their migration by hard infrastructure (Bednar-
Friedl et al. 2022). 
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Figure 3: A hard-engineered coastline with railway infrastructure and a new wave 
overtopping measurement system, “WireWall”. Photo from the University of 
Plymouth’s Dawlish camera installed as part of the Coastal REsistance: Alerts and 
Monitoring Technologies (CreamT) project.  

 

Current flood risk, during events with the presently designed standard of 
protection, would be far higher without the decades of investment into 
extensive flood risk management infrastructure (Environment Agency, 
2014). While hard defences to Hold the Line require increasing investment 
in maintenance and lock society into the cycle of failure and rebuilding, 
nature-based defences are more sustainably but require space to evolve (e.g. 
Le Cazannet et al 2022). Data on flood defences over time is not well-
developed. It is clear that massive investments in defences have occurred 
over the 20th and early 21st century. Events such as the 1953 flood were an 
important trigger. It is estimated that about 720,000 properties were 
protected from the high sea levels during the 5–6 December 2013 event 
because of flood defences (Environment Agency, 2016). However, flood 
defences were damaged during the 2013/14 season and the cost of repair 
(including fluvial defences) has been estimated to be approximately £147 
million (Environment Agency, 2020), thus more-proactive planning is now 
being promoted. Nearly a quarter of England’s 4,500 km of coast is now 
defended (Sayers et al., 2015) and several new schemes are being built or 
are planned, such as those associated with Thames Estuary 2100 
(Environment Agency, 2012) many of which are in protected areas. The UK 
also has movable storm surge barriers, including the iconic Thames Barrier, 
which became operational 1982, and smaller barriers in the Thames, Hull, 
Ipswich and Boston. The Thames and Hull barriers close on average two 
and 12 times per year, respectively. The Thames Barrier was closed an 
‘exceptional’ 50 times in the winter of 2013/14, the maximum 
recommended number, but this was predominantly to manage high fluvial 
flows highlighting the fluvial/coastal relationship of the source in estuaries 
(Haigh et al., 2024).  
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Receptors and Consequences: Receptors and consequences are linked, and 
so we deal with them together here. For past coastal flood events, Haigh et 
al. (2017) record 15 types of consequences, broadly grouped into social (e.g. 
loss of life, number of people evacuated, damage to residential property), 
economic (e.g. overall monetary cost, disruptions to ports, transport, energy, 
public services, water systems, agricultural production losses) and 
environmental (e.g. coastal erosion, degradation or losses of coastal habitats, 
ecosystems and their services, damage or loss to cultural heritage) impacts. 
The consequences of a flood can be long lasting (e.g. injury or long-term 
physical and mental health effects, or financial; Jackson and Devadason, 
2019; Quinn et al., 2023). For example, it is thought that anxiety and 
disruption of the evacuation and loss of belongings during the 26 February 
1990 coastal floods in Towyn in Wales contributed to the premature death 
of about fifty people (Wales Audit Office, 2009). The consequences of a 
flood can cause damage to commercial/business properties but also affected 
businesses and people outside of the area of coastline directly impacted, 
because of for example, disruption to supply chains or transport (Dawson et 
al., 2016).  

As rising mean sea levels increase flood risk, so does the growth in the 
number of receptors in flood-prone areas. Stevens et al. (2016) assessed 
changes in the incidents of flooding across the UK, from all sources (e.g. 
including fluvial) and found that the increase in the total number of reported 
flood events in the 20th century is dominantly controlled by growth in the 
number of receptors. From 2005 to 2014, the National Trust (2015) found 
this trend continued in coastal areas, with 15,000 new buildings built in 
areas subject to flooding and erosion. Changes in land use and increasing 
asset values in floodplain areas have also enhanced exposure to coastal 
flooding. Despite this growing loss potential, evidence from Haigh et al. 
(2017) suggests that the number and consequences of coastal floods appears 
to have declined since 1915 in the UK, reflecting better defences and 
improvements in flood forecasting, warning, emergency response and 
planning. Wider efforts at improved adaptation should also be noted, 
particularly in recent decades, which has resulted in a reduction in flood 
risk. Spatial planning and building codes are already very effective at 
reducing risk to new build properties in coastal flood plains (Sayers et al., 
2015). For example, new properties in the coastal flood plain are generally 
raised above flood levels, including an allowance for mean sea level rise. 
However, adaptation options like Coastal Change Management Areas have 
had, 10 years after their introduction, limited take-up (Kirby et al., 2021). 
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What could happen in the future? 
 
Source: Future trends in still-water levels, and storms and waves for the UK 
are detailed in the two previously mentioned companion report cards 
(Horsburgh et al., 2020; Bricheno et al. 2025). These draw significantly on 
the UKCP18 marine projections (Palmer et al., 2018). There is high 
confidence that regional mean sea level will continue to rise around the UK, 
and the likely range (90% confidence) is between 0.27 and 1.12 m by 2100 
(excluding vertical land motions). Climate models project that mean wave 
heights may decline slightly by 2100, but extreme wave events and very 
severe winter storms, particularly in autumn, could become more frequent 
and intense, amplifying risks to UK and Irish coastal zones (Bricheno et al. 
2025). 

Recent regional and global sea level projections are available from the latest 
Intergovernmental Panel on Climate Change (IPCC) Sixth Assessment 
Report (AR6; Fox-Kemper et al., 2021). Considering only processes for 
which projections can be made with at least medium confidence, relative to 
the period 1995–2014, global mean sea level rise estimated by AR6 by 2100 
are between 0.38 [0.28–0.55, likely range] m (SSP1-1.9) and 0.77 m [0.63–
1.02, likely range] (SSP5-8.5). In general, UKCP18 and AR6 give similar 
values of projected sea level rise both globally and for UK locations (Weeks 
et al., 2023). However, larger increases are considered possible (up to 2.3 m 
by 2100), due to uncertain ice sheet processes including marine ice sheet 
instabilities (MISI) or marine ice cliff instabilities (MICI) (Fox-Kemper et 
al., 2021), but assessing their likelihood is difficult. Palmer et al (2024) 
presented a range of sea level rise storylines for the UK, including 
physically plausible high-end storylines based on AR6 and van de Wal et al. 
(2022). While the Palmer et al. (2024) high-end storylines show less than 2 
m of sea level rise by 2100, they show values that can exceed 15 m across 
the UK by 2300. Reducing human emissions of greenhouse gases could 
stabilise temperature in about a century but mean sea level rise will continue 
for many centuries even if temperature is stabilised, because it takes many 
hundreds of years for the cryosphere and the deepest parts of the ocean to 
adjust to increased air temperatures. The UK coast will be subject to at least 
1 m of mean sea level rise, it is just a matter of when (Committee on 
Climate Change, 2018). 

A number of modelling studies have predicted regional changes in tidal 
range resulting from future changes in mean sea level, stratification and ice-
extent (see Haigh et al., 2020b for a review of these studies). These studies 
suggest that changes in tidal range will typically be in the order of plus or 
minus 10% of any changes in mean sea level, which could slightly enhance 
or lessen coastal flooding at some locations. Extreme water levels are 
therefore very likely to increase during the 21st century, driven primarily by 
the changes in relative mean sea level, rather than any changes in 
storminess, with some modifications at select sites due to changes in the 
magnitude and timing of tides. Future coastal flooding could also vary as a 
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result of changes in sediment pathways (e.g. longshore transport) and 
morphology (especially in estuaries; Lyddon et al., 2018b), that may result 
from mean sea level rise or variations in the wave climate, or anthropogenic 
process (e.g. dredging).  

Pathway: With mean sea level rise, along with coastal squeeze, changes in 
sediment supply, variations to ocean chemistry and pollution there is likely 
to be a continued decline in saltmarshes, shingle beaches and sand dunes 
over the coming century and beyond, although there are increasing efforts at 
coastal habitat restoration (Burden et al., 2020; Bednar-Friedl et al., 2022). 
Space for landward retreat is crucial for salt marshes and beach ecosystems. 
Nearly all tidal marshes of Great Britian are projected to retreat by 2100 
under high emissions, with southern and eastern England expected to 
experience marsh retreat by 2040 (Horton et al., 2018). Jointly, this will lead 
to defence capital and maintenance costs increasing dramatically, as natural 
buffering effects are reduced.  

Changes in flood pathways will be closely linked to future policy decisions. 
Strategic shoreline management planning has been in place in England and 
Wales since the 1990s to help manage coastal flood and erosion risks. 
Shoreline Management Plans (SMPs) help guide decisions over three future 
time periods spanning 100 years and include four management approaches 
for each coastal section: (1) Hold the Line; (2) No Active Intervention; (3) 
Managed Realignment (including Adaptive Management); (4) or Advance 
the Line, which is very rarely implement (Hosking, 2006). SMPs aim to 
balance environmental, social, and economic considerations while adapting 
to changing coastal conditions and climate change 

The Committee on Climate Change (2018) calculated that implementing the 
current SMPs would cost £18−30 billion for England, depending on the rate 
of climate change. Maintaining the 1,460 km of coastline designated as 
Hold the Line to the end of the century, achieves a lower benefit-cost ratio 
than the flood and coastal erosion risk management interventions that the 
government funds today. Therefore, on this basis, funding to protect some 
of these coastal stretches is unlikely. In addition, more detailed Coastal 
Defence Strategies subdivide the Hold the Line approach into one that 
maintains the present defence crest height (accepting a decline in the 
standard of defence with climate change) and one that sustains the standard 
of defence. The increasing lengths of coastline where it is only justifiable to 
maintain crest heights automatically leads to a gradual increase in flood risk. 

Sayers et al. (2015) assessed the relationship between mean sea level rise 
and the length of existing coastal defences that will become very difficult to 
maintain as mean sea levels rise (Figure 4). The analysis suggests that the 
length of coastal defences ‘highly vulnerable’ to failure would almost 
double under 0.5 m mean sea level rise, with the number of properties 
affected if these were lost rising by around 160%. Under a more extreme 
scenario (2.5 m of global mean sea level rise), the length of highly 
vulnerable defences is projected to treble and the number of properties 
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affected by flooding if these defences where lost would increase by 490%. 
Many shingle beaches cannot be maintained under future mean sea level 
rise, primarily because they cannot naturally adapt by rolling back 
(Dornbusch, 2017), leading to an acceleration of replacing them with hard 
structures (Dornbusch, 2019) with impacts on the natural environment and 
their contribution to people. If the Thames Barrier continues to be used for 
managing both river flow and tidal flood events, future sea level rise is 
predicted to make the number of closures unsustainable by around 2034; if 
used only for tidal flooding, this life is predicted to extend to around 2070 
(Environment Agency, 2016), but defences would need to be raised 
upstream of the barrier to reduce the number of closures to manageable 
numbers (Haigh et al., 2024). The Thames Estuary 2100 (Environment 
Agency, 2012) plan includes options for a new Thames Barrier, which 
would be built further downstream of the current barrier.  

 

 
Figure 4: The length of coastal flood defences that may become highly vulnerable 
as mean sea levels rise (source: Sayers et al., 2015). 

 

More recently Sayers et al. (2022) found that continuing to Hold the Line is 
likely to become increasingly difficult to justify. The assessment suggests 
1,600–1,900 km (~30%) of England’s shoreline is likely to experience 
increased pressure to realign by 2050s with implications for ~120,000–
160,000 properties (excluding caravans). It is likely that a proportion of 
these properties will require relocation, although it is not possible to say 
how many this will be (as this will be a matter for national and local 
decision makers). 

Receptors and Consequences: Population growth and accompanying 
development is likely to continue, particularly in areas that are currently 
defended and have a Hold the Line management policy (Sayers et al., 2015). 
Therefore, significant and growing populations and assets will remain 
located in the coastal flood plain and will be at increasing risk in the event 
of a defence failure (e.g. a breach). Furthermore, compared to the national 
average, more socially-vulnerable communities at the coast are 
disproportionally at risk and will see their risk increase more rapidly with 
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climate change than elsewhere (Sayers et al., 2017). Adaptation measures 
can reduce the expected damage to the UK and the number of areas (or 
people affected)  flooded dramatically (Vousdoukas et al., 2020); therefore 
massive investment in existing and new flood defence schemes are likely to 
continue, for heavily populated and developed regions but are unlikely for 
sparsely populated ones (CCC, 2018), and hard structures are not always 
preferred by local communities (Bude Climate Partnership, 2023). Nature 
based solution and sand-nourishment are increasingly being considered 
given their benefits for environments, and societal choices in the UK 
(Moraes et al., 2022).  

Land-use planning decisions and insurance policies in particular will play a 
large role in determining future trends. Avoiding inappropriate development 
in the floodplain will reduce future exposure to flood risk and decrease the 
consequences when they occur (Donovan et al., 2013). If insurance policies 
are changed such that flooded properties are restored, but in more flood-
resilient ways with property-level protection or in areas of less risk, this 
could reduce flood consequences over time. 

Adaptation pathways for coastal flood risk can reduce the risk of future 
mean sea level rise by combining approaches to protect such as flood 
defences, early warning systems, ecosystem-based and sediment-based 
measures, with accommodation e.g. wet and dry proofing, and 
avoidance/retreat (Bednar-Friedl et al. 2022; Muccione et al., 2024). Mean 
sea level rise is a relatively gradual change, and thus provides the time and 
opportunity for rethinking coastal communities into ones that are adapted to 
live with water (Building Futures, 2010) by having, for example, houses on 
stilts or floating houses in areas of low wave exposure, and moving 
communities out of flood risk areas where wave exposure is higher or 
additional risk factors are also increasing (Buser, 2020). Continued 
improvements to the flood forecasting (particularly in regards to forecasting 
impacts) and warning service will allow evacuations and/or preventative 
measures to be appropriately installed prior to events, such as temporary 
flood barriers or pumping stations that reduce consequences of flooding. 
Note, however, that temporary barriers are not appropriate in open-coast 
locations where wave action is an integral part of flooding scenarios. 

Projections of potential future coastal flooding impacts to the 2080s have 
been made by Sayers et al. (2015, 2020). The Sayers et al. (2015) analysis is 
based on three climate change scenarios (1.2ºC; 2.4ºC; and 3.0ºC, the higher 
scenario being based on a high end sea level scenario) and considers three 
population growths (low, high and no growth), and six adaption scenarios 
(including assumed enhanced and reduced adaptation levels when compared 
to present day); and Sayers et al. (2020) is based on two climate change 
scenarios (2ºC; 4ºC) and two population growth scenarios (lower growth 
and high growth projection). The analyses concluded that expected annual 
damages are estimated to more than double from £540m today to £1.2−1.7 
billion by the 2080s in the high sea level scenario and more than triple to 
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£1.7−1.9 billion in a more extreme scenario, in the absence of adaptation. 
The Committee on Climate Change (2018) also recently made projections of 
potential future coastal flooding impacts. They concluded that around 
520,000 properties are currently located in areas with a 0.5% (i.e. 1 in 200- 
year level) or greater annual risk from coastal flooding (not considering 
coastal defences) and by 2080s, this could increase to 1.5 million properties. 
By the 2080s, they estimate that the number of people living in England in 
areas at 0.5% or greater chance of coastal flooding in a given year is 
projected to increase from 0.95 million people to 1.10 million (2°C world 
with ambitious adaptions scenarios) and 1.55 million (4°C world with low 
levels of adaption). In addition, they estimate approximately 1,600 km of 
major roads, 650 km of railway, 92 railway stations and 55 historical 
landfill sites are likely to be at risk of coastal flooding or erosion by the end 
of the century. The critical Dawlish line is projected to suffer serious 
reliability issues due to flooding by 2040, with line restrictions increasing 
from 10 days per year to 30–40, and maintenance costs tripling or 
quadrupling (£6.9–£8.7m per year, including over £1m compensation to 
train operators; Dawson et al. 2016).  

Recently, Sayers et al. (2025) presents a new, high-resolution dataset and 
methodological framework mapping climate vulnerability at neighbourhood 
scale across the UK. It quantified social factors (such as age, health, 
mobility, housing tenure, access to green space, and flood experience), to 
derive indices of vulnerability for both flooding and heat and includes a 
preliminary business-oriented vulnerability index. The findings revealed 
that the most vulnerable communities are disproportionately those with 
higher socio-economic deprivation, often already poorer areas, with 
housing, health, and insurance implications. This spatially explicit approach 
advances adaptation planning by helping target resources and interventions 
to the places where they are most needed. 
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CONFIDENCE ASSESSMENT 

What is already happening? 

 

            X 

             

   

 

 

Confidence in understanding what is already happening with coastal 
flooding has increased from ‘low’ to ‘high’, over the duration of the MCCIP 
report cards. It remains ‘high’ here as there is a high level of consensus that: 
(1) extreme water levels are increasing in frequency due to rising mean sea 
levels, (2) that to-date we managed this sufficiently to contain growth in 
flood risk to human infrastructure, and (3) nonetheless losses in a major 
event – above defence design standards − are growing.  

 

What could happen in the future? 
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Confidence in what could happen in the future remains the same as 
previous, ‘medium’. While it is very likely extreme water levels and wave 
overtopping events will increase in frequency with mean sea level rise, 
possible changes in the wave- and storm surge-climate and their spatially 
varying contribution to flood hazard remain uncertain and there is 
considerable uncertainty in how flood pathways and receptors will change 
in the future. 
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KEY CHALLENGES AND EMERGING ISSUES  
 
Top challenges: 

1. Given that mean sea levels will continue to rise for many hundreds 
of years, we need to rethink how coastal communities can adapt to 
live with water. We need to consider how long-term aspiration can 
be realised in the planning system to deliver practical portfolios of 
adaptation options that are technically feasible, balance costs and 
benefits, can attract appropriate finance, are socially acceptable and 
can be prepared for and implemented before the need for adaptation 
becomes urgent. We need to move away from a coastal defence 
mindset (defence has a clear military connotation and it reflects our 
thinking that we are in a constant battle to protect coastal 
communities from the sea) to coastal management, where we 
consider a wider range of options in a more flexible and adaptable 
way, and in some specific cases take the radical decision to move 
away from the coast. In this context the Environment Agency’s 
Coastal Transition Accelerator Programme is a step on the right 
direction by enabling Local Authorities to explore and trial 
innovative adaptation measures. The joint learning from the four 
different trial areas (East Riding, North Norfolk, Bude and Dorset) 
has the potential to provide key adaptation learning. 
 

2. As we aspire to increase the use of nature-based flood management 
solutions, we need new monitoring to assess the flood resilience 
offered by schemes and how they evolve over time as well as better 
understand the limits of nature-based management in the context of 
their own vulnerability to climate change. In this regard, initiatives 
that build a better understanding of different types of natural coastal 
protection in a changing climate and with biodiversity loss are 
essential. 
 

3. We need to identify the mechanisms, spatial extent and possible 
physical magnitude of low probability high impact extreme coastal 
flood events to inform emergency planning and calculate residual 
risk damages. We need to develop tools to accurately quantify 
expected annual damages and event losses due to coastal flooding 
historically, today and into the future, to better inform the national 
threat level, considering uncertainty in the future projections of 
mean sea level rise, changes in storm surge and wave climates. We 
need a more-complete assessment of future changes in the wave- and 
storm surge-climate, storm tracks, and river discharge in estuaries, 
based on improved atmospheric models, to improve understanding 
of natural variability and better isolate possible long-term trends. 
Finally, we urgently need more complete and systematic UK wide 
repositories of relevant data and coastal assets, including the extent 
and condition of current and proposed flood defence engineered 
infrastructure and natural features (e.g., beaches, dunes and salt 
marshes). Effective management of these assets is crucial for 

https://engageenvironmentagency.uk.engagementhq.com/ctap
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mitigating risks and ensuring long-term coastal resilience to 
flooding.  

 
Top emerging issues: 

1. Over the last decade there has been a move towards more adaptable 
flood management. The Thames Estuary 2100 (TE2100) Plan was 
instrumental in introducing a novel, cost-effective approach to 
manage increasing flood risk by defining adaptation pathways that 
embraces uncertainty in sea level projections and can cope with 
large ranges of changes if needed (Environment Agency, 2012). In 
response, the concepts and the assessment of adaptive pathways and 
approaches to valuing adaptive capacity are increasingly moving 
mainstream (McGahey and Sayers, 2008; Ranger et al., 2010; 
Brisley et al., 2016; Haasnoot et al., 2019; Muccione et al., 2024) 
and are being considered elsewhere (e.g., in the Humber Estuary). 
Generating such adaptation pathways for different regions and 
settings in the UK and Ireland will highlight options which we 
already have to reduce risk, and where gaps of knowledge or 
legislation hinders implementation. At the same time adaptive 
management that aims to reduce future investment at the local scale 
is being implemented successfully (Creed et al., 2018). The 
Department for Environment, Food & Rural Affairs (Defra) has 
funded three Pathfinder projects located in Yorkshire, the South 
West and the Oxford Cambridge arc region, to raise awareness of the 
actions homeowners and businesses can take at a local scale to make 
their homes more resilient to flooding. 

2. It is unrealistic to promote a Hold the Line policy for significant 
lengths of the Uk and Irish coastline based on a benefit-cost ratio 
(Committee on Climate Change, 2018), to preserve natures 
contribution to people, and for social justice considerations (Cooper 
& McKenna, 2008). Funding for these locations is thus unlikely and 
realistic plans to adapt to the inevitability of change are needed now. 
A major issue, relating to Hold the line policies, is the many (at least 
1700) historical coastal landfill sites located in coastal areas (Brand 
et al., 2017). Where landfills are present, the shoreline is usually 
defended to protect the environment and people from hazards that 
may be realised if the landfill is flooded or eroded. Therefore, 
coastal landfill sites need to be protected, but this may be at odds 
with Shoreline Management Plans that recommend ‘managed 
realignment’ or ‘no active intervention’ (Beaven et al., 2018). 
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